

GlassFish Server Open Source Edition
Embedded Server Guide

Release 4.0

May 2013

This document explains how to run applications in
embedded GlassFish Server Open Source Edition and to
develop applications in which GlassFish Server is embedded.
This document is for software developers who are
developing applications to run in embedded GlassFish
Server. The ability to program in the Java language is
assumed.

Note: The main thrust of the GlassFish Server Open Source
Edition 4.0 release is to provide an application server for
developers to explore and begin exploiting the new and
updated technologies in the Java EE 7 platform. Thus, the
embedded server feature of GlassFish Server was not a focus
of this release. This feature is included in the release, but it
may not function properly with some of the new features
added in support of the Java EE 7 platform.

GlassFish Server Open Source Edition Embedded Server Guide, Release 4.0

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

1 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

Introduction to Embedded GlassFish Server.. 1-1
Embedded GlassFish Server File System .. 1-2

Installation Root Directory.. 1-2
Instance Root Directory... 1-2
The domain.xml File... 1-3

Including the GlassFish Server Embedded Server API in Applications 1-3
Setting the Class Path .. 1-3
Creating, Starting, and Stopping Embedded GlassFish Server... 1-4
Deploying and Undeploying an Application in an Embedded GlassFish Server.................... 1-7
Running asadmin Commands Using the GlassFish Server Embedded Server API 1-12
Sample Applications... 1-13

Testing Applications with the Maven Plug-in for Embedded GlassFish Server...................... 1-14
To Set Up Your Maven Environment... 1-15
To Build and Start an Application From Maven .. 1-18
To Stop Embedded GlassFish Server ... 1-19
To Redeploy an Application That Was Built and Started From Maven 1-19
Maven Goals for Embedded GlassFish Server ... 1-19

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server 1-23
To Use the EJB 3.1 Embeddable API with Embedded GlassFish Server................................. 1-24
EJB 3.1 Embeddable API Properties ... 1-25
Using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish Server 1-26

Changing Log Levels in Embedded GlassFish Server ... 1-27
Default Java Persistence Data Source for Embedded GlassFish Server..................................... 1-28
Restrictions for Embedded GlassFish Server .. 1-28

iv

List of Examples

1–1 Creating an Embedded GlassFish Server .. 1-5
1–2 Creating an Embedded GlassFish Server with configuration customizations 1-6
1–3 Setting the port of an Embedded GlassFish Server.. 1-6
1–4 Starting an Embedded GlassFish Server ... 1-7
1–5 Stopping an Embedded GlassFish Server ... 1-7
1–6 Deploying an Application From an Archive File ... 1-8
1–7 Undeploying an Application... 1-9
1–8 Deploying an Application From a Scattered Archive .. 1-10
1–9 Deploying an Application From a Scattered Enterprise Archive 1-11
1–10 Running an asadmin create-jdbc-resource Command ... 1-13
1–11 Running an asadmin set-log-level Command.. 1-13
1–12 Using an Existing domain.xml File and Deploying an Application From an Archive File......

1-13
1–13 POM File for Configuring Maven to Use Embedded GlassFish Server........................... 1-17
1–14 Maven POM File for Using the EJB 3.1 Embeddable API with Embedded GlassFish Server .

1-26
1–15 Using the GlassFish Server Embedded Server API .. 1-27
1–16 Creating a Custom Logging Configuration File.. 1-28

v

vi

List of Tables

1–1 Methods of the BootstrapProperties Class ... 1-5
1–2 Methods of the GlassFishProperties Class ... 1-5
1–3 Constructors and Methods of the ScatteredArchive Class... 1-10
1–4 Constructors and Methods of the ScatteredEnterpriseArchive Class 1-11
1–5 embedded-glassfish:run Parameters ... 1-19
1–6 embedded-glassfish:start Parameters ... 1-21
1–7 embedded-glassfish:deploy Parameters ... 1-21
1–8 embedded-glassfish:undeploy Parameters... 1-22
1–9 embedded-glassfish:stop Parameters ... 1-23
1–10 embedded-glassfish:start Parameters ... 1-23
1–11 EJB 3.1 Embeddable API Properties ... 1-25

vii

Preface

This document explains how to run applications in embedded GlassFish Server Open
Source Edition and to develop applications in which GlassFish Server is embedded.
This document is for software developers who are developing applications to run in
embedded GlassFish Server. The ability to program in the Java language is assumed.

This preface contains information about and conventions for the entire GlassFish
Server Open Source Edition (GlassFish Server) documentation set.

GlassFish Server 4.0 is developed through the GlassFish project open-source
community at http://glassfish.java.net/. The GlassFish project provides a
structured process for developing the GlassFish Server platform that makes the new
features of the Java EE platform available faster, while maintaining the most important
feature of Java EE: compatibility. It enables Java developers to access the GlassFish
Server source code and to contribute to the development of the GlassFish Server. The
GlassFish project is designed to encourage communication between Oracle engineers
and the community.

■ GlassFish Server Documentation Set

■ Related Documentation

■ Typographic Conventions

■ Symbol Conventions

■ Default Paths and File Names

■ Documentation, Support, and Training

■ Searching Oracle Product Documentation

■ Documentation Accessibility

Note: The main thrust of the GlassFish Server Open Source Edition
4.0 release is to provide an application server for developers to
explore and begin exploiting the new and updated technologies in the
Java EE 7 platform. Thus, the embedded server feature of GlassFish
Server was not a focus of this release. This feature is included in the
release, but it may not function properly with some of the new
features added in support of the Java EE 7 platform.

viii

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. For an introduction to GlassFish Server, refer to the books in the order in
which they are listed in the following table.

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server.
This guide also describes differences between adjacent product
releases and configuration options that can result in
incompatibility with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish
Server that meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration
Console online help.

Security Guide Provides instructions for configuring and administering GlassFish
Server security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the
GlassFish Server and provides information about deployment
descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Java EE platform) applications that are intended to run
on the GlassFish Server. These applications follow the open Java
standards model for Java EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server
and to develop applications in which GlassFish Server is
embedded.

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Troubleshooting Guide Describes common problems that you might encounter when
using GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
GlassFish Server.

Reference Manual Provides reference information in man page format for GlassFish
Server administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging
service.

ix

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform
(http://docs.oracle.com/javaee/7/firstcup/doc/). For beginning Java
EE programmers, this short tutorial explains the entire process for developing a
simple enterprise application. The sample application is a web application that
consists of a component that is based on the Enterprise JavaBeans specification, a
JAX-RS web service, and a JavaServer Faces component for the web front end.

■ The Java EE 7 Tutorial
(http://docs.oracle.com/javaee/7/tutorial/doc/). This
comprehensive tutorial explains how to use Java EE 7 platform technologies and
APIs to develop Java EE applications.

Javadoc tool reference documentation for packages that are provided with GlassFish
Server is available as follows.

■ The API specification for version 7 of Java EE is located at
http://docs.oracle.com/javaee/7/api/.

■ The API specification for GlassFish Server 4.0, including Java EE 7 platform
packages and nonplatform packages that are specific to the GlassFish Server
product, is located at http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications
(http://www.oracle.com/technetwork/java/javaee/tech/index.html)
might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training &
Support page (http://www.netbeans.org/kb/).

For information about the Java DB database for use with the GlassFish Server, see the
Java DB product page
(http://www.oracle.com/technetwork/java/javadb/overview/index.ht
ml).

The Java EE Samples project is a collection of sample applications that demonstrate a
broad range of Java EE technologies. The Java EE Samples are bundled with the Java
EE Software Development Kit (SDK) and are also available from the Java EE Samples
project page (http://glassfish-samples.java.net/).

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer's
Guide for JMX Clients

Describes the application programming interface in Message
Queue for programmatically configuring and monitoring
Message Queue resources in conformance with the Java
Management Extensions (JMX).

Message Queue Developer's
Guide for Java Clients

Provides information about concepts and procedures for
developing Java messaging applications (Java clients) that work
with GlassFish Server.

Message Queue Developer's
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Book Title Description

x

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Symbol Conventions
The following table explains symbols that might be used in this book.

Default Paths and File Names
The following table describes the default paths and file names that are used in this
book.

Typeface Meaning Example

AaBbCc123 The names of commands, files,
and directories, and onscreen
computer output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with
a real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms
to be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or the
n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Placeholder Description Default Value

as-install Represents the base installation
directory for GlassFish Server.

In configuration files, as-install is
represented as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac OS operating system:

user's-home-directory/glassfish3/glassfish

Installations on the Windows operating system:

SystemDrive:\glassfish3\glassfish

xi

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.oracle.com/)

■ Support (http://www.oracle.com/us/support/index.html)

■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the Oracle Documentation
(http://docs.oracle.com/) web site, you can use a search engine by typing the
following syntax in the search field:

search-term site:oracle.com

For example, to search for "broker," type the following:

broker site:oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

as-install-parent Represents the parent of the base
installation directory for GlassFish
Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user's-home-directory/glassfish3

Installations on the Windows operating system:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a
domain is created by default.

as-install/domains/

domain-dir Represents the directory in which a
domain's configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instance-dir Represents the directory for a server
instance.

domain-dir/instance-name

Placeholder Description Default Value

xii

1

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-1

1GlassFish Server Open Source Edition 4.0
Embedded Server Guide

This document explains how to run applications in embedded GlassFish Server Open
Source Edition and to develop applications in which GlassFish Server is embedded.
This document is for software developers who are developing applications to run in
embedded GlassFish Server. The ability to program in the Java language is assumed.

The following topics are addressed here:

■ Introduction to Embedded GlassFish Server

■ Embedded GlassFish Server File System

■ Including the GlassFish Server Embedded Server API in Applications

■ Testing Applications with the Maven Plug-in for Embedded GlassFish Server

■ Using the EJB 3.1 Embeddable API with Embedded GlassFish Server

■ Changing Log Levels in Embedded GlassFish Server

■ Default Java Persistence Data Source for Embedded GlassFish Server

■ Restrictions for Embedded GlassFish Server

Introduction to Embedded GlassFish Server
Embedded GlassFish Server Open Source Edition enables you to use GlassFish Server
as a library. Embedded GlassFish Server also enables you to run GlassFish Server
inside any Virtual Machine for the Java platform (Java Virtual Machine or
JVMmachine).

No installation or configuration of embedded GlassFish Server is required. The ability
to run GlassFish Server inside applications without installation or configuration
simplifies the process of bundling GlassFish Server with applications.

You can use embedded GlassFish Server in the following ways:

■ With the Embedded Server API (see Including the GlassFish Server Embedded
Server API in Applications)

■ With the Maven Plug-in (see Testing Applications with the Maven Plug-in for
Embedded GlassFish Server)

Note: Embedded GlassFish Server does not run on the Java
Platform, Micro Edition (Java ME platform).

Embedded GlassFish Server File System

1-2 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

■ With the EJB 3.1 Embeddable API (see Using the EJB 3.1 Embeddable API with
Embedded GlassFish Server)

Embedded GlassFish Server provides a plug-in for Apache Maven
(http://maven.apache.org/). This plug-in simplifies the testing of applications
by enabling you to build an application and run it with GlassFish Server on a single
system. Testing and debugging are simplified because the need for an installed and
configured GlassFish Server is eliminated. Therefore, you can run unit tests
automatically in every build.

Embedded GlassFish Server File System
The following Embedded GlassFish Server directories and files are important if you
are referencing a nonembedded installation of GlassFish Server:

■ Installation Root Directory

■ Instance Root Directory

■ The domain.xml File

Installation Root Directory
The installation root directory, represented as as-install, is the parent of the directory
that embedded GlassFish Server uses for configuration files. This directory
corresponds to the base directory for an installation of GlassFish Server. Configuration
files are contained in the following directories in the base directory for an installation
of GlassFish Server:

■ domains

■ lib

Specify the installation root directory only if you have a valid nonembedded GlassFish
Server installation and are using glassfish-embedded-static-shell.jar.

Instance Root Directory
The instance root directory, represented as domain-dir, is the parent directory of a
server instance directory. Embedded GlassFish Server Open Source Edition uses the
server instance directory for domain configuration files.

Specify the instance root directory only if you have a valid nonembedded GlassFish
Server domain directory and are using glassfish-embedded-static-shell.jar.

If domain-dir is not specified, GlassFish Server creates a directory named
gfembedrandom-numbertmp in a temporary directory, where random-number is a

Note: For information on how to embed GlassFish Server in an
OSGi environment, see the GlassFish Server Open Source Edition
Add-On Component Development Guide.

Note: If you have valid nonembedded GlassFish Server as-install
and domain-dir directories, specify both in the
BootstrapProperties and GlassFishProperties classes
respectively as described in Creating and Configuring an
Embedded GlassFish Server.

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-3

randomly generated 19-digit number. GlassFish Server then copies configuration files
into this directory. The temporary directory is the value of the system property
java.io.tmpdir. You can override this value by specifying the
glassfish.embedded.tmpdir property in the GlassFishProperties class or as a
system property.

The domain.xml File
Using an existing domain.xml file avoids the need to configure embedded GlassFish
Server programmatically in your application. Your application obtains domain
configuration data from an existing domain.xml file. You can create this file by using
the administrative interfaces of an installation of nonembedded GlassFish Server. To
specify an existing domain.xml file, invoke the setConfigFileURI method of the
GlassFishProperties class as described in Creating and Configuring an Embedded
GlassFish Server.

Including the GlassFish Server Embedded Server API in Applications
GlassFish Server Open Source Edition provides an application programming interface
(API) for developing applications in which GlassFish Server is embedded. For details,
see the org.glassfish.embeddable packages at
http://embedded-glassfish.java.net/nonav/apidocs/.

The following topics are addressed here:

■ Setting the Class Path

■ Creating, Starting, and Stopping Embedded GlassFish Server

■ Deploying and Undeploying an Application in an Embedded GlassFish Server

■ Running asadmin Commands Using the GlassFish Server Embedded Server API

■ Sample Applications

Setting the Class Path
To enable your applications to locate the class libraries for embedded GlassFish Server,
add one of the following JAR files to your class path:

glassfish-embedded-nucleus.jar
Corresponds to the nucleus distribution. Download this file from
http://download.java.net/maven/glassfish/org/glassfish/extras/gl
assfish-embedded-nucleus/.

glassfish-embedded-web.jar
Contains classes needed for deploying Java EE web applications. Download this file
from
http://download.java.net/maven/glassfish/org/glassfish/extras/gl
assfish-embedded-web/.

Note: The built-in domain.xml file used by default by Embedded
GlassFish Server can be downloaded from
http://embedded-glassfish.java.net/domain.xml. You
can customize this file and pass it in using the setConfigFileURI
method while creating an Embedded GlassFish Server.

Including the GlassFish Server Embedded Server API in Applications

1-4 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

glassfish-embedded-all.jar
Contains classes needed for deploying all Java EE application types. Download this
file from
http://download.java.net/maven/glassfish/org/glassfish/extras/gl
assfish-embedded-all/.

glassfish-embedded-static-shell.jar
Contains references to classes needed for deploying all Java EE application types.
Must be used with a nonembedded installation of GlassFish Server. Reference this file
from the as-install/lib/embedded directory of a nonembedded GlassFish Server
installation. Do not move this file or it will not work. For an explanation of as-install,
see Installation Root Directory.

In addition, add to the class path any other JAR files or classes upon which your
applications depend. For example, if an application uses a database other than Java
DB, include the Java DataBase Connectivity (JDBC) driver JAR files in the class path.

Creating, Starting, and Stopping Embedded GlassFish Server
Before you can run applications, you must set up and run the embedded GlassFish
Server.

The following topics are addressed here:

■ Creating and Configuring an Embedded GlassFish Server

■ Running an Embedded GlassFish Server

Creating and Configuring an Embedded GlassFish Server
To create and configure an embedded GlassFish Server, perform these tasks:

1. Instantiate the org.glassfish.embeddable.BootstrapProperties class.

2. Invoke any methods for configuration settings that you require. This is optional.

3. Invoke the GlassFishRuntime.bootstrap() or
GlassFishRuntime.bootstrap(BootstrapProperties) method to create a
GlassFishRuntime object.

4. Instantiate the org.glassfish.embeddable.GlassFishProperties class.

5. Invoke any methods for configuration settings that you require. This is optional.

6. Invoke the glassfishRuntime.newGlassFish(GlassFishProperties) method to
create a GlassFish object.

The methods of the BootstrapProperties class for setting the server configuration are
listed in the following table. The default value of each configuration setting is also
listed.

Note: Oracle GlassFish Server only supports use of the
glassfish-embedded-static-shell.jar file. The other files are
part of GlassFish Server Open Source Edition and are offered
without official support.

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-5

The methods of the GlassFishProperties class for setting the server configuration are
listed in the following table. The default value of each configuration setting is also
listed.

Example 1–1 Creating an Embedded GlassFish Server

This example shows code for creating an Embedded GlassFish Server.

...
import org.glassfish.embeddable.*;
...
 GlassFish glassfish = GlassFishRuntime.bootstrap().newGlassFish();
 glassfish.start();
...

Table 1–1 Methods of the BootstrapProperties Class

Purpose Method Default Value

References an existing
Installation Root
Directory, also called
as-install

setInstallRoot(String
as-install)

None. If
glassfish-embedded-static-shel
l.jar is used, the Installation Root
Directory is automatically
determined and need not be
specified.

Table 1–2 Methods of the GlassFishProperties Class

Purpose Method Default Value

References an
existing Instance
Root Directory, also
called domain-dir

setInstanceRoot(String
domain-dir)

In order of precedence:

■ glassfish.embedded.tmpdir
property value specified in
GlassFishProperties object

■ glassfish.embedded.tmpdir
system property value

■ java.io.tmp system property
value

■ as-install/domains/domain1 if a
nonembedded installation is
referenced

Creates a new or
references an existing
configuration file

setConfigFileURI(String
configFileURI)

In order of precedence:

■ domain-dir/config/domain.xml
if domain-dir was set using
setInstanceRoot

■ built-in embedded domain.xml

Specifies whether the
configuration file is
read-only

setConfigFileReadOnly(boolean
readOnly)

true

Sets the port on
which Embedded
GlassFish Server
listens.

setPort(String networkListener, int
port)

none

Note: Do not use setPort if you are using setInstanceRoot or
setConfigFileURI.

Including the GlassFish Server Embedded Server API in Applications

1-6 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

Example 1–2 Creating an Embedded GlassFish Server with configuration
customizations

This example shows code for creating an Embedded GlassFish Server using the
existing domain-dir C:\samples\test\applicationserver\domains\domain1.

...
import org.glassfish.embeddable.*;
...
 BootstrapProperties bootstrapProperties = new BootstrapProperties();
 bootstrapProperties.setInstallRoot("C:\\samples\\test\\applicationserver");
 GlassFishRuntime glassfishRuntime =
GlassFishRuntime.bootstrap(bootstrapProperties);

 GlassFishProperties glassfishProperties = new GlassFishProperties();

glassfishProperties.setInstanceRoot("C:\\samples\\test\\applicationserver\\domains
\\domain1");
 GlassFish glassfish = glassfishRuntime.newGlassFish(glassfishProperties);

 glassfish.start();

...

Running an Embedded GlassFish Server
After you create an embedded GlassFish Server as described in Creating and
Configuring an Embedded GlassFish Server, you can perform operations such as:

■ Setting the Port of an Embedded GlassFish Server From an Application

■ Starting an Embedded GlassFish Server From an Application

■ Stopping an Embedded GlassFish Server From an Application

Setting the Port of an Embedded GlassFish Server From an Application You must set the
server's HTTP or HTTPS port. If you do not set the port, your application fails to start
and throws an exception. You can set the port directly or indirectly.

■ To set the port directly, invoke the setPort method of the GlassFishProperties
object.

■ To set the port indirectly, use a domain.xml file that sets the port. For more
information, see The domain.xml File.

Example 1–3 Setting the port of an Embedded GlassFish Server

This example shows code for setting the port of an embedded GlassFish Server.

...
import org.glassfish.embeddable.*;
...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setPort("http-listener", 8080);
 glassfishProperties.setPort("https-listener", 8181);
...

Note: Do not use setPort if you are using setInstanceRoot or
setConfigFileURI. These methods set the port indirectly.

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-7

Starting an Embedded GlassFish Server From an Application To start an embedded GlassFish
Server, invoke the start method of the GlassFish object.

Example 1–4 Starting an Embedded GlassFish Server

This example shows code for setting the port and starting an embedded GlassFish
Server. This example also includes the code from Example 1–1 for creating a
GlassFish object.

...
import org.glassfish.embeddable.*;
...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setPort("http-listener", 8080);
 glassfishProperties.setPort("https-listener", 8181);
 ...
 GlassFish glassfish =
GlassFishRuntime.bootstrap().newGlassFish(glassfishProperties);
 glassfish.start();
...

Stopping an Embedded GlassFish Server From an Application The API for embedded
GlassFish Server provides a method for stopping an embedded server. Using this
method enables your application to stop the server in an orderly fashion by
performing any necessary cleanup steps before stopping the server, for example:

■ Undeploying deployed applications

■ Releasing any resources that your application uses

To stop an embedded GlassFish Server, invoke the stop method of an existing
GlassFish object.

Example 1–5 Stopping an Embedded GlassFish Server

This example shows code for prompting the user to press the Enter key to stop an
embedded GlassFish Server. Code for creating a GlassFish object is not shown in this
example. For an example of code for creating a GlassFish object, see Example 1–1.

...
import java.io.BufferedReader;
...
import org.glassfish.embeddable.*;
...
 System.out.println("Press Enter to stop server");
 // wait for Enter
 glassfish.stop(); // Stop Embedded GlassFish Server
...

As an alternative, you can use the dispose method to stop an embedded GlassFish
Server and dispose of the temporary file system.

Deploying and Undeploying an Application in an Embedded GlassFish Server
Deploying an application installs the files that comprise the application into
Embedded GlassFish Server and makes the application ready to run. By default, an
application is enabled when it is deployed.

The following topics are addressed here:

Including the GlassFish Server Embedded Server API in Applications

1-8 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

■ To Deploy an Application From an Archive File or a Directory

■ Undeploying an Application

■ Creating a Scattered Archive

■ Creating a Scattered Enterprise Archive

For general information about deploying applications in GlassFish Server, see the
GlassFish Server Open Source Edition Application Deployment Guide.

To Deploy an Application From an Archive File or a Directory
An archive file contains the resources, deployment descriptor, and classes of an
application. The content of the file must be organized in the directory structure that
the Java EE specifications define for the type of archive that the file contains. For more
information, see "Deploying Applications" in GlassFish Server Open Source Edition
Application Deployment Guide.

Deploying an application from a directory enables you to deploy an application
without the need to package the application in an archive file. The contents of the
directory must match the contents of the expanded Java EE archive file as laid out by
the GlassFish Server. The directory must be accessible to the machine on which the
deploying application runs. For more information about the requirements for deploying
an application from a directory, see "To Deploy an Application or Module in a
Directory Format" in GlassFish Server Open Source Edition Application Deployment Guide.

If some of the resources needed by an application are not under the application's
directory, see Creating a Scattered Archive.

1. Instantiate the java.io.File class to represent the archive file or directory.

2. Invoke the getDeployer method of the GlassFish object to get an instance of the
org.glassfish.embeddable.Deployer class.

3. Invoke the deploy(File archive, params) method of the instance of the Deployer
object.

Specify the java.io.File class instance you created previously as the first method
parameter.

For information about optional parameters you can set, see the descriptions of the
deploy(1) subcommand parameters. Simply quote each parameter in the method,
for example "--force=true".

Example 1–6 Deploying an Application From an Archive File

This example shows code for deploying an application from the archive file
c:\samples\simple.war and setting the name, contextroot, and force parameters. This
example also includes the code from Example 1–1 for creating GlassFishProperties
and GlassFish objects.

...
import java.io.File;
...
import org.glassfish.embeddable.*;
...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setPort("http-listener", 8080);
 glassfishProperties.setPort("https-listener", 8181);
 ...
 GlassFish glassfish =
GlassFishRuntime.bootstrap().newGlassFish(glassfishProperties);

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-9

 glassfish.start();
 File war = new File("c:\\samples\\simple.war");
 Deployer deployer = glassfish.getDeployer();
 deployer.deploy(war, "--name=simple", "--contextroot=simple", "--force=true");
 // deployer.deploy(war) can be invoked instead. Other parameters are optional.
...

Undeploying an Application
Undeploy an application when the application is no longer required to run in
GlassFish Server. For example, before stopping GlassFish Server, undeploy all
applications that are running in GlassFish Server.

To undeploy an application, invoke the undeploy method of an existing Deployer
object. In the method invocation, pass the name of the application as a parameter. This
name is specified when the application is deployed.

For information about optional parameters you can set, see the descriptions of the
deploy(1) command parameters. Simply quote each parameter in the method, for
example "--cascade=true".

To undeploy all deployed applications, invoke the undeployAll method of an existing
EmbeddedDeployer object. This method takes no parameters.

Example 1–7 Undeploying an Application

This example shows code for undeploying the application that was deployed in
Example 1–6.

...
import org.glassfish.embeddable.*;
...
 deployer.undeploy(war, "--droptables=true", "--cascade=true");
...

Creating a Scattered Archive
Deploying a module from a scattered archive (WAR or JAR) enables you to deploy an
unpackaged module whose resources, deployment descriptor, and classes are in any
location. Deploying a module from a scattered archive simplifies the testing of a
module during development, especially if all the items that the module requires are
not available to be packaged.

In a scattered archive, these items are not required to be organized in a specific
directory structure. Therefore, you must specify the location of the module's resources,
deployment descriptor, and classes when deploying the module.

To create a scattered archive, perform these tasks:

1. Instantiate the org.glassfish.embeddable.archive.ScatteredArchive class.

2. Invoke the addClassPath and addMetadata methods if you require them.

Note: If you reference a nonembedded GlassFish Server
installation using the glassfish-embedded-static-shell.jar file
and do not undeploy your applications in the same server life cycle
in which you deployed them, expanded archives for these
applications remain under the domain-dir/applications directory.

Including the GlassFish Server Embedded Server API in Applications

1-10 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

3. Invoke the toURI method to deploy the scattered archive.

The methods of this class for setting the scattered archive configuration are listed in
the following table. The default value of each configuration setting is also listed.

Example 1–8 Deploying an Application From a Scattered Archive

This example shows code for creating a WAR file and using the addClassPath and
addMetadata methods. This example also includes the code from Example 1–6 for
deploying an application from an archive file.

...
import java.io.File;
...
import org.glassfish.embeddable.*;
...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setPort("http-listener", 9090);
 GlassFish glassfish =
GlassFishRuntime.bootstrap().newGlassFish(glassfishProperties);
 glassfish.start();
 Deployer deployer = glassfish.getDeployer();
 ScatteredArchive archive = new ScatteredArchive("testapp",
ScatteredArchive.Type.WAR);
 // target/classes directory contains complied servlets
 archive.addClassPath(new File("target", "classes"));
 // resources/sun-web.xml is the WEB-INF/sun-web.xml
 archive.addMetadata(new File("resources", "sun-web.xml"));
 // resources/web.xml is the WEB-INF/web.xml
 archive.addMetadata(new File("resources", "web.xml"));
 // Deploy the scattered web archive.
 String appName = deployer.deploy(archive.toURI(), "--contextroot=hello");

 deployer.undeploy(appName);
 glassfish.stop();

Table 1–3 Constructors and Methods of the ScatteredArchive Class

Purpose Method
Default
Value

Creates and names a scattered archive ScatteredArchive(String name,
ScatteredArchive.Type type)

None

Creates and names a scattered archive based on
a top-level directory. If the entire module is
organized under the topDir, this is the only
method necessary. The topDir can be null if other
methods specify the remaining parts of the
module.

ScatteredArchive(String name,
ScatteredArchive.Type type,
File topDir)

None

Adds a directory to the classes classpath addClassPath(File path) None

Adds a metadata locator addMetaData(File path) None

Adds and names a metadata locator addMetaData(File path,
String name)

None

Gets the deployable URI for this scattered
archive

toURI() None

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-11

 glassfish.dispose();
...

Creating a Scattered Enterprise Archive
Deploying an application from a scattered enterprise archive (EAR) enables you to
deploy an unpackaged application whose resources, deployment descriptor, and
classes are in any location. Deploying an application from a scattered archive
simplifies the testing of an application during development, especially if all the items
that the application requires are not available to be packaged.

In a scattered archive, these items are not required to be organized in a specific
directory structure. Therefore, you must specify the location of the application's
resources, deployment descriptor, and classes when deploying the application.

To create a scattered enterprise archive, perform these tasks:

1. Instantiate the
org.glassfish.embeddable.archive.ScatteredEnterpriseArchive class.

2. Invoke the addArchive and addMetadata methods if you require them.

3. Invoke the toURI method to deploy the scattered enterprise archive.

The methods of this class for setting the scattered enterprise archive configuration are
listed in the following table. The default value of each configuration setting is also
listed.

Example 1–9 Deploying an Application From a Scattered Enterprise Archive

This example shows code for creating an EAR file and using the addArchive and
addMetadata methods. This example also includes code similar toExample 1–8 for
creating a scattered archive.

Table 1–4 Constructors and Methods of the ScatteredEnterpriseArchive Class

Purpose Method
Default
Value

Creates and names a scattered
enterprise archive

ScatteredEnterpriseArchive(String name) None

Adds a module or library addArchive(File archive) None

Adds a module or library addArchive(File archive,
String name)

None

Adds a module or library addArchive(URI URI) None

Adds a module or library addArchive(URI URI,
String name)

None

Adds a metadata locator addMetaData(File path) None

Adds and names a metadata locator addMetaData(File path,
String name)

None

Gets the deployable URI for this
scattered archive

toURI() None

Including the GlassFish Server Embedded Server API in Applications

1-12 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

...
import java.io.File;
...
import org.glassfish.embeddable.*;
...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setPort("http-listener", 9090);
 GlassFish glassfish =
GlassFishRuntime.bootstrap().newGlassFish(glassfishProperties);
 glassfish.start();
 Deployer deployer = glassfish.getDeployer();

 // Create a scattered web application.
 ScatteredArchive webmodule = new ScatteredArchive("testweb",
ScatteredArchive.Type.WAR);
 // target/classes directory contains my complied servlets
 webmodule.addClassPath(new File("target", "classes"));
 // resources/sun-web.xml is my WEB-INF/sun-web.xml
 webmodule.addMetadata(new File("resources", "sun-web.xml"));

 // Create a scattered enterprise archive.
 ScatteredEnterpriseArchive archive = new
ScatteredEnterpriseArchive("testapp");
 // src/application.xml is my META-INF/application.xml
 archive.addMetadata(new File("src", "application.xml"));
 // Add scattered web module to the scattered enterprise archive.
 // src/application.xml references Web module as "scattered.war".
 //Hence specify the name while adding the archive.
 archive.addArchive(webmodule.toURI(), "scattered.war");
 // lib/mylibrary.jar is a library JAR file.
 archive.addArchive(new File("lib", "mylibrary.jar"));
 // target/ejbclasses contain my compiled EJB module.
 // src/application.xml references EJB module as "ejb.jar".
 //Hence specify the name while adding the archive.
 archive.addArchive(new File("target", "ejbclasses"), "ejb.jar");

 // Deploy the scattered enterprise archive.
 String appName = deployer.deploy(archive.toURI());

 deployer.undeploy(appName);
 glassfish.stop();
 glassfish.dispose();
...

Running asadmin Commands Using the GlassFish Server Embedded Server API
Running asadmin commands from an application enables the application to configure
the embedded GlassFish Server to suit the application's requirements. For example, an
application can run the required asadmin commands to create a JDBC technology
connection to a database.

For more information about configuring embedded GlassFish Server, see the GlassFish
Server Open Source Edition Administration Guide. For detailed information about
asadmin commands, see Section 1 of the GlassFish Server Open Source Edition Reference
Manual.

Including the GlassFish Server Embedded Server API in Applications

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-13

The org.glassfish.embeddable package contains classes that you can use to run
asadmin commands. Use the following code examples as templates and change the
command name, parameter names, and parameter values as needed.

Example 1–10 Running an asadmin create-jdbc-resource Command

This example shows code for running an asadmin create-jdbc-resource command.
Code for creating and starting the server is not shown in this example. For an example
of code for creating and starting the server, see Example 1–4.

...
import org.glassfish.embeddable.*;
...
 String command = "create-jdbc-resource";
 String poolid = "--connectionpoolid=DerbyPool";
 String dbname = "jdbc/DerbyPool";
 CommandRunner commandRunner = glassfish.getCommandRunner();
 CommandResult commandResult = commandRunner.run(command, poolid, dbname);
...

Example 1–11 Running an asadmin set-log-level Command

This example shows code for running an asadmin set-log-level command. Code for
creating and starting the server is not shown in this example. For an example of code
for creating and starting the server, see Example 1–4.

...
import org.glassfish.embeddable.*;
...
 String command = "set-log-level";
 String weblevel = "javax.enterprise.system.container.web=FINE";
 CommandRunner commandRunner = glassfish.getCommandRunner();
 CommandResult commandResult = commandRunner.run(command, weblevel);
...

For another way to change log levels, see Changing Log Levels in Embedded
GlassFish Server.

Sample Applications

Example 1–12 Using an Existing domain.xml File and Deploying an Application From an
Archive File

This example shows code for the following:

■ Using the existing file
c:\myapp\embeddedserver\domains\domain1\config\domain.xml and preserving
this file when the application is stopped.

■ Deploying an application from the archive file c:\samples\simple.war.

import java.io.File;

Note: Ensure that your application has started an embedded
GlassFish Server before the application attempts to run asadmin
commands. For more information, see Running an Embedded
GlassFish Server.

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

1-14 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

import java.io.BufferedReader;
import org.glassfish.embeddable.*;

public class Main {

 /**
 * @param args the command line arguments
 */

 public static void main(String[] args) {
 File configFile = new File
("c:\\myapp\\embeddedserver\\domains\\domain1\\config\\domain.xml");
 File war = new File("c:\\samples\\simple.war");
 try {
 GlassFishRuntime glassfishRuntime = GlassFishRuntime.bootstrap();
 ...
 GlassFishProperties glassfishProperties = new GlassFishProperties();
 glassfishProperties.setConfigFileURI(configFile.toURI());
 glassfishProperties.setConfigFileReadOnly(false);
 ...
 GlassFish glassfish =
glassfishRuntime.newGlassFish(glassfishProperties);
 glassfish.start();

 Deployer deployer = glassfish.getDeployer();
 deployer.deploy(war, "--force=true");
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 System.out.println("Press Enter to stop server");
 // wait for Enter
 new BufferedReader(new java.io.InputStreamReader(System.in)).readLine();
 try {
 glassfish.dispose();
 glassfishRuntime.shutdown();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Testing Applications with the Maven Plug-in for Embedded GlassFish
Server

If you are using Apache Maven (http://maven.apache.org/), the plug-in for
embedded GlassFish Server simplifies the testing of applications. This plug-in enables
you to build and start an unpackaged application with a single Maven goal.

The following topics are addressed here:

■ To Set Up Your Maven Environment

■ To Build and Start an Application From Maven

■ To Stop Embedded GlassFish Server

■ To Redeploy an Application That Was Built and Started From Maven

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-15

■ Maven Goals for Embedded GlassFish Server

Predefined Maven goals for embedded GlassFish Server are described in Maven Goals
for Embedded GlassFish Server.

To use Maven with Embedded GlassFish Server and the EJB 3.1 Embeddable API, see
Using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish Server.

To Set Up Your Maven Environment
Setting up your Maven environment enables Maven to download the required
embedded GlassFish Server distribution file when you build your project. Setting up
your Maven environment also identifies the plug-in that enables you to build and start
an unpackaged application with a single Maven goal.

Before You Begin
Ensure that Apache Maven (http://maven.apache.org/) is installed.

1. Identify the Maven plug-in for embedded GlassFish Server.

Add the following plugin element to your POM file:

...
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.glassfish</groupId>
 <artifactId>maven-embedded-glassfish-plugin</artifactId>
 <version>version</version>
 </plugin>
 ...
 </plugins>
...

version
The version to use. The version of the final promoted build for this release is 3.1.
The Maven plug-in is not bound to a specific version of GlassFish Server. You can
specify the version you want to use. If no version is specified, a default version, 3.1
for this release, is used.

2. Configure the embedded-glassfish goal prefix, the application name, and other
standard settings.

Add the following configuration element to your POM file:

...
 <plugins>
 ...
 <plugin>
 ...
 <configuration>
 <goalPrefix>embedded-glassfish</goalPrefix>
 ...
 <app>target/test.war</app>
 <port>8080</port>
 <contextRoot>test</contextRoot>
 <autoDelete>true</autoDelete>
 ...
 </configuration>

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

1-16 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

 ...
 </plugin>
 ...
 </plugins>
...

In the app parameter, substitute the archive file or directory for your application.
The optional port, contextRoot, and autoDelete parameters show example values.
For details, see Maven Goals for Embedded GlassFish Server.

3. Perform advanced plug-in configuration. This step is optional.

Add the following configuration element to your POM file:

...
 <plugins>
 ...
 <plugin>
 ...
 <configuration>
 <goalPrefix>embedded-glassfish</goalPrefix>
 <app>target/test.war</app>
 <name>test</name>
 <contextRoot>test</contextRoot>
 <ports>
 <http-listener>8080</http-listener>
 <https-listener>8181</https-listener>
 </ports>
 <bootstrapProperties>
 <property>test_key=test_value</property>
 </bootstrapProperties>

<bootstrapPropertiesFile>bootstrap.properties</bootstrapPropertiesFile>
 <glassfishProperties>
<property>embedded-glassfish-config.server.jms-service.jms-host.default_JMS_
host.port=17676</property>
 </glassfishProperties>

<glassfishPropertiesFile>glassfish.properties</glassfishPropertiesFile>
 <systemProperties>
 <property>ANTLR_USE_DIRECT_CLASS_
LOADING=true</property>
 </systemProperties>

<systemPropertiesFile>system.properties</systemPropertiesFile>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>start</goal>
 <goal>deploy</goal>
 <goal>undeploy</goal>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
...

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-17

4. Configure Maven goals.

Add execution elements to your POM file:

...
 <plugins>
 ...
 <plugin>
 ...
 <executions>
 <execution>
 <phase>install</phase>
 <goals>
 <goal>goal</goal>
 </goals>
 </execution>
 </executions>
 ...
 </plugin>
 ...
 </plugins>
...

goal
The goal to use. See Maven Goals for Embedded GlassFish Server.

5. Configure the repository.

Add the following repository element to your POM file:

<pluginRepositories>
 <pluginRepository>
 <id>maven2-repository.dev.java.net</id>
 <name>Java.net Repository for Maven</name>
 <url>http://download.java.net/maven/glassfish/</url>
 </pluginRepository>
</pluginRepositories>

Example 1–13 POM File for Configuring Maven to Use Embedded GlassFish Server

This example shows a POM file for configuring Maven to use embedded GlassFish
Server.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Line breaks in the following element are for readability purposes only
-->
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.glassfish</groupId>
 <artifactId>maven-glassfish-plugin-tester</artifactId>
 <version>3.1</version>
 <name>Maven test</name>
 <build>
 <plugins>
 <plugin>
 <groupId>org.glassfish</groupId>

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

1-18 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

 <artifactId>maven-embedded-glassfish-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <goalPrefix>embedded-glassfish</goalPrefix>
 <app>target/test.war</app>
 <port>8080</port>
 <contextRoot>test</contextRoot>
 <autoDelete>true</autoDelete>
 </configuration>
 <executions>
 <execution>
 <phase>install</phase>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <pluginRepositories>
 <pluginRepository>
 <id>maven2-repository.dev.java.net</id>
 <name>Java.net Repository for Maven</name>
 <url>http://download.java.net/maven/glassfish/</url>
 </pluginRepository>
 </pluginRepositories>
</project>

To Build and Start an Application From Maven
If you are using Maven to manage the development of your application, you can use a
Maven goal to build and start the application in embedded GlassFish Server.

Before You Begin
Ensure that your Maven environment is configured, as described in To Set Up Your
Maven Environment.

1. Include the path to the Maven executable file mvn in your path statement.

2. Ensure that the JAVA_HOME environment variable is defined.

3. Create a directory for the Maven project for your application.

4. Copy to your project directory the POM file that you created in To Set Up Your
Maven Environment.

5. Run the following command in your project directory:

mvn install

This command performs the following actions:

■ Installs the Maven repository in a directory named .m2 under your home
directory.

■ Starts Embedded GlassFish Server.

■ Deploys your application.

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-19

The application continues to run in Embedded GlassFish Server until Embedded
GlassFish Server is stopped.

To Stop Embedded GlassFish Server
1. Change to the root directory of the Maven project for your application.

2. Run the Maven goal to stop the application in embedded GlassFish Server.

mvn embedded-glassfish:stop

This runs the stop method of the GlassFish object and any other methods that are
required to shut down the server in an orderly fashion. See Stopping an
Embedded GlassFish Server From an Application.

To Redeploy an Application That Was Built and Started From Maven
An application that was built and started from Maven continues to run in Embedded
GlassFish Server until Embedded GlassFish Server is stopped. While the application is
running, you can test changes to the application by redeploying it.

To redeploy, in the window from where the application was built and started from
Maven, press Enter.

Maven Goals for Embedded GlassFish Server
You can use the following Maven goals to test your applications with embedded
GlassFish Server:

■ embedded-glassfish:run Goal

■ embedded-glassfish:start Goal

■ embedded-glassfish:deploy Goal

■ embedded-glassfish:undeploy Goal

■ embedded-glassfish:stop Goal

■ embedded-glassfish:admin Goal

embedded-glassfish:run Goal
This goal starts the server and deploys an application. You can redeploy if you change
the application. The application can be a packaged archive or a directory that contains
an exploded application. You can set the parameters described in the following table.

Table 1–5 embedded-glassfish:run Parameters

Parameter Default Description

app None The archive file or directory for the
application to be deployed.

serverID maven (optional) The ID of the server to
start.

containerType all (optional) The container to start: web,
ejb, jpa, or all.

installRoot None (optional) The Installation Root
Directory.

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

1-20 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

instanceRoot In order of precedence:

■ glassfish.embedded.tmpdir
property value specified in
GlassFishProperties object

■ glassfish.embedded.tmpdir
system property value

■ java.io.tmp system property
value

■ as-install/domains/domain1 if a
nonembedded installation is
referenced

(optional) The Instance Root
Directory

configFile domain-dir/config/domain.xml (optional) The configuration file.

port None. Must be set explicitly or
defined in the configuration file.

The HTTP or HTTPS port.

name In order of precedence:

■ The application-name or
module-name in the deployment
descriptor.

■ The name of the archive file
without the extension or the
directory name.

For more information, see "Naming
Standards" in GlassFish Server Open
Source Edition Application Deployment
Guide.

(optional) The name of the
application.

contextRoot The name of the application. (optional) The context root of the
application.

precompileJsp false (optional) If true, JSP pages are
precompiled during deployment.

dbVendorName None (optional) The name of the database
vendor for which tables can be
created. Allowed values are javadb,
db2, mssql, mysql, oracle,
postgresql, pointbase, derby (also
for CloudScape), and sybase,
case-insensitive.

createTables Value of the
create-tables-at-deploy attribute
in sun-ejb-jar.xml.

(optional) If true, creates database
tables during deployment for beans
that are automatically mapped by
the EJB container.

dropTables Value of the
drop-tables-at-undeploy attribute
in sun-ejb-jar.xml.

(optional) If true, and deployment
and undeployment occur in the same
JVM session, database tables that
were automatically created when the
bean(s) were deployed are dropped
when the bean(s) are undeployed.

If true, the name parameter must be
specified or tables may not be
dropped.

Table 1–5 (Cont.) embedded-glassfish:run Parameters

Parameter Default Description

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-21

embedded-glassfish:start Goal
This goal starts the server. You can set the parameters described in the following table.

embedded-glassfish:deploy Goal
This goal deploys an application. You can redeploy if you change the application. The
application can be a packaged archive or a directory that contains an exploded
application. You can set the parameters described in the following table.

autoDelete false (optional) If true, deletes the
contents of the Instance Root
Directory when the server is
stopped.

Caution: Do not set autoDelete to
true if you are using installRoot to
refer to a preexisting GlassFish
Server installation.

Table 1–6 embedded-glassfish:start Parameters

Parameter Default Description

serverID maven (optional) The ID of the server to start.

containerType all (optional) The container to start: web, ejb,
jpa, or all.

installRoot None (optional) The Installation Root Directory.

instanceRoot In order of precedence:

■ glassfish.embedded.tmpdir
system property value

■ java.io.tmpdir system
property value

■ as-install/domains/domain1

(optional) The Instance Root Directory

configFile domain-dir/config/domain.xml (optional) The configuration file.

port None. Must be set explicitly or
defined in the configuration file.

The HTTP or HTTPS port.

autoDelete false (optional) If true, deletes the contents of
the Instance Root Directory when the
server is stopped.

Caution: Do not set autoDelete to true if
you are using installRoot to refer to a
preexisting GlassFish Server installation.

Table 1–7 embedded-glassfish:deploy Parameters

Parameter Default Description

app None The archive file or directory for the
application to be deployed.

serverID maven (optional) The ID of the server to start.

Table 1–5 (Cont.) embedded-glassfish:run Parameters

Parameter Default Description

Testing Applications with the Maven Plug-in for Embedded GlassFish Server

1-22 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

embedded-glassfish:undeploy Goal

This goal undeploys an application. You can set the parameters described in the
following table.

name In order of precedence:

■ The application-name or
module-name in the deployment
descriptor.

■ The name of the archive file
without the extension or the
directory name.

For more information, see "Naming
Standards" in GlassFish Server Open
Source Edition Application Deployment
Guide.

(optional) The name of the application.

contextRoot The name of the application. (optional) The context root of the
application.

precompileJsp false (optional) If true, JSP pages are
precompiled during deployment.

dbVendorName None (optional) The name of the database
vendor for which tables can be created.
Allowed values are javadb, db2, mssql,
oracle, postgresql, pointbase, derby
(also for CloudScape), and sybase,
case-insensitive.

createTables Value of the
create-tables-at-deploy attribute
in sun-ejb-jar.xml.

(optional) If true, creates database
tables during deployment for beans
that are automatically mapped by the
EJB container.

Note: If you reference a nonembedded GlassFish Server
installation using the glassfish-embedded-static-shell.jar file
and do not undeploy your applications in the same server life cycle
in which you deployed them, expanded archives for these
applications remain under the domain-dir/applications directory.

Table 1–8 embedded-glassfish:undeploy Parameters

Parameter Default Description

name If the name is omitted, all
applications are undeployed.

The name of the application.

serverID maven (optional) The ID of the server to start.

dropTables Value of the
drop-tables-at-undeploy
attribute in sun-ejb-jar.xml.

(optional) If true, and deployment and
undeployment occur in the same JVM session,
database tables that were automatically created
when the bean(s) were deployed are dropped
when the bean(s) are undeployed.

If true, the name parameter must be specified or
tables may not be dropped.

Table 1–7 (Cont.) embedded-glassfish:deploy Parameters

Parameter Default Description

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-23

embedded-glassfish:stop Goal
This goal stops the server. You can set the parameters described in the following table.

embedded-glassfish:admin Goal
This goal runs a GlassFish Server administration command. You must use either the
command and commandParameters parameters in combination or the commandLine
parameter. For more information about administration commands, see the GlassFish
Server Open Source Edition Reference Manual. You can set the parameters described in
the following table.

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server
The EJB 3.1 Embeddable API is designed for unit testing of EJB modules. You must use
this API with a pre-installed, nonembedded GlassFish Server instance. However, you
can take advantage of Embedded GlassFish Server's ease of use by referencing the
nonembedded GlassFish Server instance with the
glassfish-embedded-static-shell.jar file.

Embedded GlassFish Server is not related to the EJB 3.1 Embeddable API, but you can
use these APIs together.

The Maven plug-in does not apply to embeddable EJB applications. However, you can
use Maven with the POM file shown in Using Maven with the EJB 3.1 Embeddable
API and Embedded GlassFish Server.

The EJB 3.1 Embeddable API is described in Java Specification Request (JSR) 318
(http://jcp.org/en/jsr/detail?id=318). An ejb-embedded sample is

cascade false (optional) If true, deletes all connection pools
and connector resources associated with the
resource adapter being undeployed.

If false, undeployment fails if any pools or
resources are still associated with the resource
adapter.

This attribute is applicable to connectors
(resource adapters) and applications with
connector modules.

Table 1–9 embedded-glassfish:stop Parameters

Parameter Default Description

serverID maven (optional) The ID of the server to stop.

Table 1–10 embedded-glassfish:start Parameters

Parameter Default Description

serverID maven (optional) The ID of the server on which to run the command.

command None The name of the command, for example createJdbcResource.

commandParameters None A map of the command parameters. See the
org.glassfish.embeddable.admin.CommandParameters class
at http://glassfish.java.net/nonav/docs/v3/api/.

commandLine None The full asadmin syntax of the command.

Table 1–8 (Cont.) embedded-glassfish:undeploy Parameters

Parameter Default Description

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server

1-24 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

included in the samples available at Java EE 7 Downloads
(http://www.oracle.com/technetwork/java/javaee/downloads/index.h
tml) or Code Samples
(http://www.oracle.com/technetwork/java/javaee/documentation/ind
ex.html).

The EJB 3.1 Embeddable API supports all EJB 3.1 Lite features with addition of the EJB
timer service and testing of EJB modules packaged in a WAR file.

For EJB modules in a WAR file (or an exploded directory), if a web application has one
EJB module, and there are no other EJB modules in the classpath, those entries
(libraries) are ignored. If there are other EJB modules, a temporary EAR file is created.
For EJB modules in a WAR file to be tested, the client code must use EJB modules with
interfaces or without annotations. Those EJB modules are not part of the classpath and
can't be loaded by the client class loader.

The following topics are addressed here:

■ To Use the EJB 3.1 Embeddable API with Embedded GlassFish Server

■ EJB 3.1 Embeddable API Properties

■ Using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish Server

To Use the EJB 3.1 Embeddable API with Embedded GlassFish Server
1. To specify GlassFish Server as the Container Provider, include

glassfish-embedded-static-shell.jar or glassfish-embedded-all.jar in the
class path of your embeddable EJB application.

Reference the glassfish-embedded-static-shell.jar file from the
as-install/lib/embedded directory of a GlassFish Server installation. Do not move
this file or it will not work.

See Setting the Class Path and Section 22.3.3 of the EJB 3.1 Specification,
Embeddable Container Bootstrapping.

2. Configure any required resources.

For more information about configuring resources, see the Administration
Console Online Help or "Resources and Services Administration" in GlassFish
Server Open Source Edition Administration Guide. The jdbc/__default Java DB
database is preconfigured with all distributions of GlassFish Server. However, if
you are using glassfish-embedded-static-shell.jar, you must start the
database manually.

If your embeddable EJB application uses Java Persistence, you do not need to
specify a JDBC resource. See Default Java Persistence Data Source for Embedded
GlassFish Server.

3. Invoke one of the createEJBContainer methods.

Note: Do not deploy your embeddable EJB application or any of
its dependent Java EE modules before invoking one of the
createEJBContainer methods. These methods perform
deployment in the background and do not load previously
deployed applications or modules.

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-25

4. To change the Instance Root Directory, set the
org.glassfish.ejb.embedded.glassfish.instance.root system property value
by using the createEJBContainer(Map<?, ?> properties) method.

The default Instance Root Directory location is as-install/domains/domain1 if a
nonembedded installation is referenced. This system property applies only to
embeddable EJB applications used with nonembedded GlassFish Server.

5. Close the EJB container properly to release all acquired resources and threads.

EJB 3.1 Embeddable API Properties
Properties that can be passed to the EJBContainer#createEJBContainer(Properties)
method are summarized in the following table. All properties are in the
org.glassfish.ejb.embedded.glassfish package. For example, the full name of the
installation.root property is
org.glassfish.ejb.embedded.glassfish.installation.root.

Table 1–11 EJB 3.1 Embeddable API Properties

Property Default Description

installation.root GlassFish Server installation
location from which
glassfish-embedded-static-shell
.jar is referenced

The Installation Root
Directory.

instance.root In order of precedence:

■ glassfish.embedded.tmpdir
property value specified in
GlassFishProperties object

■ glassfish.embedded.tmpdir
system property value

■ java.io.tmp system property
value

■ as-install/domains/domain1 if a
nonembedded installation is
referenced

The Instance Root Directory.

configuration.file domain-dir/config/domain.xml The configuration file.

keep-temporary-files false If true, keeps temporary
files (exploded EAR file and
configuration file) created
by the embedded EJB
container when Embedded
GlassFish Server is stopped.

web.http.port None Enables the web container if
set. Needed for testing web
services in a WAR file. The
value is ignored and can be
an empty string.

Using the EJB 3.1 Embeddable API with Embedded GlassFish Server

1-26 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

Using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish Server
When using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish
Server, you cannot use the features of the Maven plug-in. You must start and stop
Embedded GlassFish Server manually or programmatically outside of Maven.

Example 1–14 Maven POM File for Using the EJB 3.1 Embeddable API with Embedded
GlassFish Server

This example shows a POM file for configuring Maven to use the EJB 3.1 Embeddable
API with Embedded GlassFish Server.

<!--
Line breaks in the following element are for readability purposes only
-->
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.glassfish</groupId>
 <artifactId>my-ejb-app-tester</artifactId>
 <version>3.1</version>
 <name>Maven test</name>
 <dependencies>
 <dependency>
 <groupId>org.glassfish.extras</groupId>
 <artifactId>glassfish-embedded-static-shell</artifactId>
 <version>${project.version}</version>
 <scope>system</scope>
 <systemPath>
 ${env.S1AS_HOME}/lib/embedded/glassfish-embedded-static-shell.jar
 </systemPath>
 </dependency>
<!--
 The javaee-api is stripped of any code and is just used to compile your
 application. The scope provided in Maven means that it is used for
compiling,
 but is also available when testing. For this reason, the javaee-api needs
to

instance.reuse false If true, no changes are
made to the existing
configuration file, and a
temporary server instance is
not created for the
embedded run. Instead,
execution happens against
the existing server instance.
Do not use this option if the
reused server instance could
be in use by the running
nonembedded GlassFish
Server.

skip-client-modules false If true, omits modules from
the classpath if they are not
specified using
EJBContainer.MODULES and
have a manifest file with a
Main-Class attribute.

Table 1–11 (Cont.) EJB 3.1 Embeddable API Properties

Property Default Description

Changing Log Levels in Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-27

 be below the embedded Glassfish dependency. The javaee-api can actually be
 omitted when the embedded Glassfish dependency is included, but to keep
your
 project Java-EE 6 rather than GlassFish 3, specification is important.
-->
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <pluginRepositories>
 <pluginRepository>
 <id>maven2-repository.dev.java.net</id>
 <name>Java.net Repository for Maven</name>
 <url>http://download.java.net/maven/glassfish/</url>
 </pluginRepository>
 </pluginRepositories>
</project>

If you are using glassfish-embedded-static-shell.jar, you can omit the
dependency element with the javaee-api artifactId and the pluginRepositories
element.

Set the S1AS_HOME environment variable to the installation root directory before
running the mvn clean verify command.

Changing Log Levels in Embedded GlassFish Server
To change log levels in Embedded GlassFish Server, you can follow the steps in this
section or you can use the Embedded Server API as shown in Example 1–11. For more
information about GlassFish Server logging, see "Administering the Logging Service"
in GlassFish Server Open Source Edition Administration Guide.

You can change log levels in Embedded GlassFish Server in either of the following
ways:

■ Using the GlassFish Server Embedded Server API

■ Creating a custom logging configuration file

Both these ways use logger names. For a list of logger names, use the list-log-levels
subcommand.

Example 1–15 Using the GlassFish Server Embedded Server API

This example shows how to set log levels using the getLogger method in the API.

import org.glassfish.embeddable.*;

// Create Embedded GlassFish
GlassFish glassfish = GlassFishRuntime.bootstrap().newGlassFish();

// Set the log levels. For example, set 'deployment' and 'server' log levels to
FINEST
Logger.getLogger("").getHandlers()[0].setLevel(Level.FINEST);
Logger.getLogger("javax.enterprise.system.tools.deployment").setLevel(Level.FINEST
);
Logger.getLogger("javax.enterprise.system").setLevel(Level.FINEST);

Default Java Persistence Data Source for Embedded GlassFish Server

1-28 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

// Start Embedded GlassFish and deploy an application.
// You will see all the FINEST logs printed on the console.
glassfish.start();
glassfish.getDeployer().deploy(new File("sample.war"));

// Dispose Embedded GlassFish
glassfish.dispose();

Example 1–16 Creating a Custom Logging Configuration File

This example shows the contents of a custom logging configuration file,
customlogging.properties.

handlers= java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = FINEST
javax.enterprise.system.tools.deployment.level = FINEST
javax.enterprise.system.level = FINEST

Pass the name of this custom logging configuration file to the java command when
you invoke Embedded GlassFish Server. For example:

java -Djava.util.logging.config.file=customlogging.properties MyEmbeddedGlassFish

Default Java Persistence Data Source for Embedded GlassFish Server
The jdbc/__default Java DB database is preconfigured with Embedded GlassFish
Server. It is used when an application is deployed in Embedded GlassFish Server that
uses Java Persistence but doesn't specify a data source. Embedded GlassFish Server
uses the embedded Java DB database created in a temporary domain that is destroyed
when Embedded GlassFish Server is stopped. You can use a Java DB database
configured with nonembedded GlassFish Server if you explicitly specify the instance
root directory or the configuration file.

By default, weaving is enabled when the GlassFish Server Embedded Server API is
used. To disable weaving, set the
org.glassfish.persistence.embedded.weaving.enabled property to false.

Restrictions for Embedded GlassFish Server
The glassfish-embedded-web.jar file for embedded GlassFish Server supports only
these features of nonembedded GlassFish Server:

■ The following web technologies of the Java EE platform:

– Java Servlet API

– JavaServer Pages (JSP) technology

– JavaServer Faces technology

■ JDBC-technology connection pooling

■ Java Persistence API

■ Java Transaction API

■ Java Transaction Service

The glassfish-embedded-all.jar and glassfish-embedded-static-shell.jar files
support all features of nonembedded GlassFish Server with these exceptions:

Restrictions for Embedded GlassFish Server

GlassFish Server Open Source Edition 4.0 Embedded Server Guide 1-29

■ Installers

■ Administration Console

■ Update Tool

■ Apache Felix OSGi framework

■ The Maven plug-in for embedded GlassFish Server does not support application
clients.

■ Applications that require ports for communication, such as remote EJB
components, do not work with the EJB 3.1 Embeddable API running with
embedded GlassFish Server if a nonembedded GlassFish Server is running in
parallel.

Embedded GlassFish Server requires no installation or configuration. As a result, the
following files and directories are absent from the file system until embedded
GlassFish Server is started:

■ default-web.xml file

■ domain.xml file

■ Applications directory

■ Instance root directory

When embedded GlassFish Server is started, the base installation directory that
GlassFish Server uses depends on the options with which GlassFish Server is started.
If necessary, embedded GlassFish Server creates a base installation directory.
Embedded GlassFish Server then copies the following directories and their contents
from the Java archive (JAR) file in which embedded GlassFish Server is distributed:

■ domains

■ lib

If necessary, GlassFish Server also creates an instance root directory.

Restrictions for Embedded GlassFish Server

1-30 GlassFish Server Open Source Edition 4.0 Embedded Server Guide

	Contents
	Preface
	1 GlassFish Server Open Source Edition 4.0 Embedded Server Guide
	Introduction to Embedded GlassFish Server
	Embedded GlassFish Server File System
	Installation Root Directory
	Instance Root Directory
	The domain.xml File

	Including the GlassFish Server Embedded Server API in Applications
	Setting the Class Path
	Creating, Starting, and Stopping Embedded GlassFish Server
	Deploying and Undeploying an Application in an Embedded GlassFish Server
	Running asadmin Commands Using the GlassFish Server Embedded Server API
	Sample Applications

	Testing Applications with the Maven Plug-in for Embedded GlassFish Server
	To Set Up Your Maven Environment
	To Build and Start an Application From Maven
	To Stop Embedded GlassFish Server
	To Redeploy an Application That Was Built and Started From Maven
	Maven Goals for Embedded GlassFish Server

	Using the EJB 3.1 Embeddable API with Embedded GlassFish Server
	To Use the EJB 3.1 Embeddable API with Embedded GlassFish Server
	EJB 3.1 Embeddable API Properties
	Using Maven with the EJB 3.1 Embeddable API and Embedded GlassFish Server

	Changing Log Levels in Embedded GlassFish Server
	Default Java Persistence Data Source for Embedded GlassFish Server
	Restrictions for Embedded GlassFish Server

