

Open Message Queue
Developer's Guide for JMX Clients

Release 5.0

May 2013

This guide describes the application programming interface
provided in Open Message Queue for programmatically
configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Open Message Queue Developer's Guide for JMX Clients, Release 5.0

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

1 Introduction to JMX Programming for Message Queue Clients

JMX Architecture .. 1-1
Message Queue MBeans ... 1-2

Resource MBeans ... 1-2
Manager MBeans.. 1-3
Object Names.. 1-4

2 Using the JMX API

Interface Packages .. 2-1
Utility Classes ... 2-1
Connecting to the MBean Server... 2-3

Obtaining a JMX Connector from an Admin Connection Factory ... 2-3
Obtaining a JMX Connector Without Using an Admin Connection Factory............................ 2-4

Using MBeans ... 2-5
Accessing MBean Attributes... 2-5
Invoking MBean Operations .. 2-9
Receiving MBean Notifications... 2-14

3 Message Queue MBean Reference

Brokers.. 3-1
Broker Configuration... 3-1
Broker Monitor ... 3-4

Connection Services... 3-7
Service Configuration.. 3-7
Service Monitor .. 3-8
Service Manager Configuration .. 3-11
Service Manager Monitor... 3-11

Connections .. 3-13
Connection Configuration ... 3-13
Connection Monitor.. 3-13
Connection Manager Configuration .. 3-14
Connection Manager Monitor ... 3-15

Destinations.. 3-16

iv

Destination Configuration ... 3-17
Destination Monitor.. 3-20
Destination Manager Configuration .. 3-25
Destination Manager Monitor... 3-28

Message Producers .. 3-29
Producer Manager Configuration .. 3-30
Producer Manager Monitor ... 3-30

Message Consumers ... 3-32
Consumer Manager Configuration .. 3-32
Consumer Manager Monitor... 3-33

Transactions .. 3-36
Transaction Manager Configuration .. 3-36
Transaction Manager Monitor... 3-37

Broker Clusters .. 3-39
Cluster Configuration... 3-40
Cluster Monitor ... 3-43

Logging.. 3-47
Log Configuration... 3-47
Log Monitor ... 3-48

Java Virtual Machine .. 3-49
JVM Monitor .. 3-49

A Alphabetical Reference

v

vi

List of Examples

2–1 Obtaining a JMX Connector from an Admin Connection Factory 2-3
2–2 Configuring an Admin Connection Factory ... 2-4
2–3 Obtaining a JMX Connector Without Using an Admin Connection Factory..................... 2-4
2–4 Getting an Attribute Value .. 2-5
2–5 Getting Multiple Attribute Values ... 2-6
2–6 Setting an Attribute Value ... 2-7
2–7 Setting Multiple Attribute Values .. 2-8
2–8 Invoking an Operation ... 2-9
2–9 Invoking an Operation with Parameters .. 2-10
2–10 Combining Operations and Attributes ... 2-11
2–11 Using a Composite Data Object ... 2-12
2–12 Notification Listener .. 2-14
2–13 Registering a Notification Listener.. 2-15

vii

viii

List of Tables

1–1 Object Name Properties .. 1-4
1–2 Message Queue MBean Types ... 1-5
1–3 Message Queue MBean Subtypes.. 1-5
1–4 Destination Types .. 1-5
1–5 Connection Service Names... 1-5
1–6 Example Object Names ... 1-6
1–7 Utility Constants and Methods for Object Names .. 1-6
2–1 Message Queue JMX Utility Classes ... 2-2
3–1 Broker Configuration Attributes.. 3-2
3–2 Broker Configuration Operations.. 3-2
3–3 Broker Configuration Notification .. 3-4
3–4 Broker Monitor Attributes .. 3-5
3–5 Broker Monitor Notifications ... 3-5
3–6 Data Retrieval Methods for Broker Monitor Notifications .. 3-6
3–7 Connection Service Names for Service Configuration MBeans.. 3-7
3–8 Service Configuration Attributes... 3-7
3–9 Service Configuration Operations ... 3-8
3–10 Service Configuration Notification ... 3-8
3–11 Connection Service Names for Service Monitor MBeans .. 3-8
3–12 Service Monitor Attributes ... 3-9
3–13 Connection Service State Values... 3-10
3–14 Service Monitor Operations... 3-10
3–15 Service Monitor Notifications ... 3-10
3–16 Data Retrieval Method for Service Monitor Notifications.. 3-10
3–17 Service Manager Configuration Attributes... 3-11
3–18 Service Manager Configuration Operations ... 3-11
3–19 Service Manager Monitor Attributes ... 3-12
3–20 Service Manager Monitor Operation ... 3-12
3–21 Service Manager Monitor Notifications .. 3-12
3–22 Data Retrieval Method for Service Manager Monitor Notifications 3-13
3–23 Connection Configuration Attribute.. 3-13
3–24 Connection Monitor Attributes... 3-14
3–25 Connection Monitor Operations... 3-14
3–26 Connection Manager Configuration Attribute ... 3-15
3–27 Connection Manager Configuration Operations.. 3-15
3–28 Connection Manager Monitor Attributes.. 3-16
3–29 Connection Manager Monitor Operation.. 3-16
3–30 Connection Manager Monitor Notifications... 3-16
3–31 Data Retrieval Methods for Connection Manager Monitor Notifications...................... 3-16
3–32 Destination Configuration Attributes .. 3-17
3–33 Destination Configuration Type Values.. 3-19
3–34 Destination Limit Behaviors.. 3-19
3–35 Destination Configuration Operations .. 3-19
3–36 Destination Pause Types.. 3-20
3–37 Destination Configuration Notification... 3-20
3–38 Destination Monitor Attributes .. 3-20
3–39 Destination Monitor Type Values .. 3-23
3–40 Destination State Values .. 3-23
3–41 Destination Monitor Operations... 3-24
3–42 Destination Monitor Notifications.. 3-25
3–43 Data Retrieval Methods for Destination Monitor Notifications 3-25
3–44 Destination Manager Configuration Attributes ... 3-25
3–45 Destination Manager Configuration Operations ... 3-27

ix

3–46 Destination Manager Configuration Type Values ... 3-27
3–47 Destination Manager Pause Types ... 3-28
3–48 Destination Manager Configuration Notification.. 3-28
3–49 Destination Manager Monitor Attributes.. 3-28
3–50 Destination Manager Monitor Operation.. 3-29
3–51 Destination Manager Monitor Notifications... 3-29
3–52 Data Retrieval Methods for Destination Manager Monitor Notifications...................... 3-29
3–53 Producer Manager Configuration Attribute ... 3-30
3–54 Producer Manager Configuration Operation ... 3-30
3–55 Producer Manager Monitor Attribute ... 3-31
3–56 Producer Manager Monitor Operations .. 3-31
3–57 Lookup Keys for Message Producer Information.. 3-32
3–58 Message Producer Destination Types.. 3-32
3–59 Consumer Manager Configuration Attribute... 3-33
3–60 Consumer Manager Configuration Operations ... 3-33
3–61 Consumer Manager Monitor Attribute ... 3-34
3–62 Consumer Manager Monitor Operations.. 3-34
3–63 Lookup Keys for Message Consumer Information.. 3-34
3–64 Message Consumer Destination Types.. 3-35
3–65 Acknowledgment Modes... 3-36
3–66 Transaction Manager Configuration Attribute .. 3-36
3–67 Transaction Manager Configuration Operations ... 3-37
3–68 Transaction Manager Monitor Attributes ... 3-37
3–69 Transaction Manager Monitor Operations.. 3-38
3–70 Lookup Keys for Transaction Information.. 3-38
3–71 Transaction State Values .. 3-39
3–72 Transaction Manager Monitor Notifications .. 3-39
3–73 Data Retrieval Method for Transaction Manager Monitor Notifications....................... 3-39
3–74 Cluster Configuration Attributes.. 3-40
3–75 Cluster Configuration Operations.. 3-41
3–76 Lookup Keys for Cluster Configuration Information.. 3-42
3–77 Lookup Keys for changeMasterBroker.. 3-43
3–78 Cluster Configuration Notification .. 3-43
3–79 Cluster Monitor Attributes .. 3-44
3–80 Cluster Monitor Operations .. 3-45
3–81 Lookup Keys for Cluster Monitor Information .. 3-46
3–82 Broker State Values... 3-46
3–83 Cluster Monitor Notifications ... 3-47
3–84 Data Retrieval Methods for Cluster Monitor Notifications .. 3-47
3–85 Log Configuration Attributes.. 3-48
3–86 Log Configuration Logging Levels .. 3-48
3–87 Log Configuration Notification .. 3-48
3–88 Log Monitor Notifications ... 3-49
3–89 Data Retrieval Methods for Log Monitor Notifications .. 3-49
3–90 JVM Monitor Attributes ... 3-50
A–1 Alphabetical List of MBean Attributes .. A-1
A–2 Alphabetical List of MBean Operations... A-5
A–3 Alphabetical List of MBean Notifications ... A-8

x

xi

Preface

This Developer's Guide for JMX Clients describes the application programming interface
provided in Message Queue for programmatically configuring and monitoring
Message Queue resources in conformance with the Java Management Extensions
(JMX). These functions are also available to system administrators by way of the
Message Queue Administration Console and command line utilities, as described in
the Open Message Queue Administration Guide; the API described here makes the same
administrative functionality available programmatically from within a running client
application. Broker properties and command-line options that support the JMX API
are described in the Open Message Queue Administration Guide .

This preface consists of the following sections:

■ Who Should Use This Book

■ Before You Read This Book

■ How This Book Is Organized

■ Documentation Conventions

■ Related Documentation

■ Documentation, Support, and Training

■ Documentation Accessibility

Who Should Use This Book
This guide is intended for Java application developers wishing to use the Message
Queue JMX API to perform Message Queue administrative tasks programmatically
from within a client application.

Before You Read This Book
This guide assumes that you are already familiar with general Message Queue
concepts, administrative operations, and Java client programming, as described in the
following manuals:

■ Open Message Queue Technical Overview

■ Open Message Queue Administration Guide

■ Open Message Queue Developer's Guide for Java Clients

You should also be familiar with the general principles of the Java Management
Extensions, as described in the following publications:

xii

■ Java Management Extensions Instrumentation and Agent Specification

■ Java Management Extensions (JMX) Remote API Specification

Together, these two publications are referred to hereafter as the JMX Specification.

How This Book Is Organized
The following table describes the contents of this manual.

Documentation Conventions
This section describes the following conventions used in Message Queue
documentation:

■ Typographic Conventions

■ Symbol Conventions

■ Shell Prompt Conventions

■ Directory Variable Conventions

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Chapter Description

Chapter 1, "Introduction to JMX
Programming for Message Queue
Clients"

Introduces the basic concepts and principles of the Message Queue
JMX interface.

Chapter 2, "Using the JMX API" Provides code examples showing how to use the JMX application
programming interface from within your Message Queue client
applications.

Chapter 3, "Message Queue MBean
Reference"

Provides detailed information on the attributes, operations, and
notifications provided by Message Queue managed beans (MBeans).

Appendix A, "Alphabetical Reference" Lists the MBean attributes, operations, and notifications alphabetically,
with references back to their descriptions in the body of the manual.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear
bold online.

xiii

Symbol Conventions
The following table explains symbols that might be used in this book.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for
the default UNIX system prompt and superuser prompt for the C shell, Bourne shell,
Korn shell, and for the Windows operating system.

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which
represent environment variables needed by Message Queue. (How you set the
environment variables varies from platform to platform.)

The following table describes the directory variables that might be found in this book
and how they are used. Some of these variables refer to the directory mqInstallHome,
which is the directory where Message Queue is installed to when using the installer or
unzipped to when using a zip-based distribution.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or
the n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release
it, and then press the
subsequent keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Note: In this book, directory variables are shown without
platform-specific environment variable notation or syntax (such as
$IMQ_HOME on UNIX). Non-platform-specific path names use UNIX
directory separator (/) notation.

xiv

Related Documentation
The information resources listed in this section provide further information about
Message Queue in addition to that contained in this manual. The section covers the
following resources:

■ Message Queue Documentation Set

■ Java Message Service (JMS) Specification

■ JavaDoc

■ Example Client Applications

■ Online Help

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the
following table in the order in which you might normally use them. These documents
are available through the Oracle GlassFish Server documentation web site at
http://www.oracle.com/technetwork/indexes/documentation/index.ht
ml.

Variable Description

IMQ_HOME The Message Queue home directory:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
HOME is as-install-parent/mq, where as-install-parent is the parent directory
of the GlassFish Server base installation directory, glassfish3 by
default.

■ For installations of Open Message Queue, IMQ_HOME is
mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set as
an environment variable to point to any directory or will default as
described below:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
VARHOME defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to
mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executable files. By default,
Message Queue looks for and uses the latest JDK, but you can optionally set
the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

Document Audience Description

Technical Overview Developers and
administrators

Describes Message Queue concepts, features, and
components.

Release Notes Developers and
administrators

Includes descriptions of new features, limitations,
and known bugs, as well as technical notes.

Administration Guide Administrators,
also recommended
for developers

Provides background and information needed to
perform administration tasks using Message
Queue administration tools.

xv

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service Specification.
This document can be found at the URL
http://www.oracle.com/technetwork/java/jms/index.html.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in
Message Queue installations at IMQ_HOME/javadoc/index.html. This documentation
can be viewed in any HTML browser. It includes standard JMS API documentation as
well as Message Queue-specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are included in Message Queue installations at IMQ_
HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at IMQ_
HOME/examples/C. See the README files located in this directory and its subdirectories
for descriptive information about the example applications.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in
Message Queue installations at IMQ_HOME/examples/jmx. See the README files located in
this directory and its subdirectories for descriptive information about the example
applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
"Command Line Reference" in Open Message Queue Administration Guide. The Message
Queue graphical user interface (GUI) administration tool, the Administration Console,
also includes a context-sensitive help facility; for details, see "Administration Console
Online Help" in Open Message Queue Administration Guide.

Developer's Guide for
Java Clients

Developers Provides a quick-start tutorial and programming
information for developers of Java client programs
using the Message Queue implementation of the
JMS or SOAP/JAXM APIs.

Developer's Guide for
C Clients

Developers Provides programming and reference
documentation for developers of C client programs
using the Message Queue C implementation of the
JMS API (C-API).

Developer's Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Document Audience Description

xvi

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.oracle.com/)

■ Support (http://www.oracle.com/us/support/044752.html)

■ Training (http://education.oracle.com/pls/web_prod-plq-dad/db_
pages.getpage?page_id=315)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

1

Introduction to JMX Programming for Message Queue Clients 1-1

1Introduction to JMX Programming for
Message Queue Clients

While Message Queue's Administration Console and command line administration
utilities allow an administrator to interactively configure and monitor Message Queue
resources (such as brokers, connections, and destinations), these tools are not
accessible from within a running client application.

To provide programmatic access to such administrative functions, Message Queue also
incorporates an application programming interface based on the Java Management
Extensions (JMX). Client applications can use this JMX API to programmatically
perform the configuration and monitoring operations that are available interactively
through the Administration Console and command line utilities.

You can use Message Queue's JMX API in your client applications for a variety of
purposes:

■ To optimize performance by monitoring the usage of brokers and other Message
Queue resources and reconfiguring their parameters based on the results

■ To automate regular maintenance tasks, rolling upgrades, and so forth

■ To write your own utility applications to replace or enhance standard Message
Queue tools such as the Broker utility (imqbrokerd) and Command utility (imqcmd)

In addition, since JMX is the Java standard for building management applications and
is widely used for managing J2EE infrastructure, you can use it to incorporate your
Message Queue client as part of a larger J2EE deployment using a standard
management framework throughout.

JMX Architecture
The JMX Specification defines an architecture for the instrumentation and
programmatic management of distributed resources. This architecture is based on the
notion of a managed bean, or MBean: a Java object, similar to a JavaBean, representing
a resource to be managed. Message Queue MBeans may be associated with individual
resources such as brokers, connections, or destinations, or with whole categories of
resources, such as the set of all destinations on a broker. There are separate
configuration MBeans and monitor MBeans for setting a resource's configuration
properties and monitoring its runtime state.

Each MBean is identified by an object name, an instance of the JMX class ObjectName
conforming to the syntax and conventions defined in the JMX Specification. Object
names for Message Queue MBeans are either defined as static constants or returned by
static methods in the Message Queue utility class MQObjectName; see Object Names for
further information.

Message Queue MBeans

1-2 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

An MBean provides access to its underlying resource through a management interface
consisting of the following:

■ Attributes holding data values representing static or dynamic properties of the
resource

■ Operations that can be invoked to perform actions on the resource

■ Notifications informing the client application of state changes or other significant
events affecting the resource

Client applications obtain MBeans through an MBean server, which serves as a
container and registry for MBeans. Each Message Queue broker process contains an
MBean server, accessed by means of a JMX connector. The JMX connector is used to
obtain an MBean server connection, which in turn provides access to individual
MBeans on the server. Configuring or monitoring a Message Queue resource with JMX
requires the following steps:

1. Obtain a JMX connector.

2. Get an MBean server connection from the JMX connector.

3. Construct an object name identifying the particular MBean you wish to operate on.

4. Pass the object name to the appropriate methods of the MBean server connection
to access the MBean's attributes, operations, and notifications.

5. Close the MBean server connection.

See Using the JMX API for code examples illustrating the technique for various MBean
operations.

Message Queue MBeans
Message Queue's JMX functionality is exposed through MBeans associated with
various Message Queue resources. These MBeans are of two kinds: resource MBeans
and manager MBeans. The attributes, operations, and notifications available for each
type of MBean are described in detail in Message Queue MBean Reference.

Resource MBeans
Resource MBeans are associated with individual Message Queue resources of the
following types:

■ Message brokers

■ Connection services

■ Connections

■ Destinations

■ Broker clusters

■ Logging

■ The Java Virtual Machine (JVM)

Configuration and monitoring functions are implemented by separate MBeans. Each
managed resource is associated with a configuration MBean for setting the resource's
configuration and a monitor MBean for gathering (typically transient) information
about its runtime state. For instance, there is a destination configuration MBean for
configuring a destination and a destination monitor MBean for obtaining runtime
information about it. In general, each instance of a managed resource has its own pair

Message Queue MBeans

Introduction to JMX Programming for Message Queue Clients 1-3

of MBeans: thus there is a separate destination configuration MBean and destination
monitor MBean for each individual destination. (In the case of the Java Virtual
Machine, there is only a JVM monitor MBean with no corresponding configuration
MBean.)

Configuration MBeans are used to perform such tasks as the following:

■ Set a broker's port number

■ Set a broker's maximum message size

■ Pause a connection service

■ Set the maximum number of threads for a connection service

■ Purge all messages from a destination

■ Set the level of logging information to be written to an output channel

Monitor MBeans are used to obtain runtime information such as the following:

■ The current number of connections on a service

■ The cumulative number of messages received by a destination since the broker
was started

■ The current state (running or paused) of a queue destination

■ The current number of message producers for a topic destination

■ The host name and port number of a cluster's master broker

■ The current JVM heap size

Manager MBeans
In addition to the resource MBeans associated with individual resources, there are also
manager MBeans for managing some whole categories of resources. These manager
MBeans also come in pairs—one for configuration and one for monitoring—for the
following resource categories:

■ Connection services

■ Connections

■ Destinations

■ Message producers

■ Message consumers

■ Transactions

Unlike individual resource MBeans, a broker has only one pair of manager MBeans for
each whole category of resources: for instance, a single destination manager
configuration MBean and a single destination manager monitor MBean. For some
categories (connection services, connections, destinations), the manager MBeans exist
in addition to the ones for individual resources, and are used to manage the collection
of resource MBeans within the category or to perform global tasks that are beyond the
scope of individual resource MBeans. Thus, for instance, there is a connection manager
configuration MBean and a connection manager monitor MBean in addition to the
connection configuration and connection monitor MBeans associated with individual
connections. Manager MBeans of this type are used to perform tasks such as the
following:

Message Queue MBeans

1-4 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

■ Get the object names of the connection service monitor MBeans for all available
connection services

■ Get the total number of current connections

■ Destroy a connection

■ Create or destroy a destination

■ Enable or disable auto-creation of destinations

■ Pause message delivery for all destinations

In other cases (message producers, message consumers, transactions), there are no
MBeans associated with individual resources and all of the resources in the category
are managed through the manager MBeans themselves. The manager MBeans for
these categories can be used for such tasks as the following:

■ Get the destination name associated with a message producer

■ Purge all messages from a durable subscriber

■ Commit or roll back a transaction

Object Names
Each individual MBean is designated by an object name belonging to the JMX class
ObjectName, which encapsulates a string identifying the MBean. For Message Queue
MBeans, the encapsulated name string has the following syntax:

com.sun.messaging.jms.server:property=value[,property=value]*

Table 1–1 shows the possible properties.

Table 1–1 Object Name Properties

Property Description Values

type MBean type See Table 1–2.

subtype MBean subtype See Table 1–3.

desttype Destination type

Applies only to MBeans of the
following types:

■ Destination configuration

■ Destination monitor

See Table 1–4.

name Resource name

Applies only to MBeans of the
following types:

■ Service configuration

■ Service monitor

■ Destination configuration

■ Destination monitor

For service configuration and service monitor MBeans, see
Table 1–5.

For destination configuration and destination monitor
MBeans, the destination name.

Examples:

■ myTopic

■ temporary_
destination://queue/129.145.180.99/63008/1

id Resource identifier

Applies only to MBeans of the
following types:

■ Connection configuration

■ Connection monitor

Example:

7853717387765338368

Message Queue MBeans

Introduction to JMX Programming for Message Queue Clients 1-5

Table 1–2 shows the possible values for the object name's type property.

Table 1–3 shows the possible values for the object name's subtype property.

For destination configuration and destination monitor MBeans, the object name's
desttype property specifies whether the destination is a point-to-point queue or a
publish/subscribe topic. Table 1–4 shows the possible values, which are defined for
convenience as static constants in the utility class DestinationType.

For service configuration and service monitor MBeans, the object name's name
property identifies the connection service with which the MBean is associated.
Table 1–5 shows the possible values.

Table 1–2 Message Queue MBean Types

Value Description

Broker Broker resource MBean

Service Connection service resource MBean

ServiceManager Connection service manager MBean

Connection Connection resource MBean

ConnectionManager Connection manager MBean

Destination Destination resource MBean

DestinationManager Destination manager MBean

ProducerManager Message producer manager MBean

ConsumerManager Message consumer manager MBean

TransactionManager Transaction manager MBean

Cluster Broker cluster resource MBean

Log Logging resource MBean

JVM JVM resource MBean

Table 1–3 Message Queue MBean Subtypes

Value Description

Config Configuration MBean

Monitor Monitor MBean

Table 1–4 Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe)
destination

Table 1–5 Connection Service Names

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

Message Queue MBeans

1-6 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table 1–6 shows some example object names.

The object names for each type of Message Queue MBean are given in the relevant
sections of Message Queue MBean Reference. All such names are either defined as
static constants or returned by static methods in the utility class MQObjectName (see
Table 1–7). For instance, the constant

MQObjectName.BROKER_CONFIG_MBEAN_NAME
is defined as a string representing the object name for a broker configuration MBean,
and the method call

MQObjectName. createDestinationMonitor(DestinationType .TOPIC, "MyQueue");
returns the destination monitor MBean object name shown in Table 1–6. Note that,
whereas methods such as createDestinationMonitor return an actual object name
(that is, an object of class ObjectName) that can be assigned directly to a variable of that
type

ObjectNamedestMonitorName
= MQObjectName. createDestinationMonitor(DestinationType .TOPIC, "Dest");
constants like BROKER_CONFIG_MBEAN_NAME instead represent an ordinary string (class
String) that must then be converted into the corresponding object name itself:

ObjectNamebrokerConfigName
= new ObjectName(MQObjectName.BROKER_CONFIG_MBEAN_NAME);

httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Table 1–6 Example Object Names

MBean type Object Name

Broker
configuration

com.sun.messaging.jms.server:type=Broker,subtype=Config

Service
manager
monitor

com.sun.messaging.jms.server:type=ServiceManager,subtype=Monitor

Connection
configuration

com.sun.messaging.jms.server:type=Connection,subtype=Config,id=7853717387765338368

Destination
monitor

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,desttype=t,name="MyQueu
e"

Table 1–7 Utility Constants and Methods for Object Names

MBean Type Utility Constant or Method

Broker configuration MQObjectName.BROKER_CONFIG_MBEAN_NAME

Broker monitor MQObjectName.BROKER_MONITOR_MBEAN_NAME

Service configuration MQObjectName.createServiceConfig

Service monitor MQObjectName.createServiceMonitor

Service manager configuration MQObjectName.SERVICE_MANAGER_CONFIG_MBEAN_NAME

Table 1–5 (Cont.) Connection Service Names

Service Name Service Type Protocol Type

Message Queue MBeans

Introduction to JMX Programming for Message Queue Clients 1-7

Service manager monitor MQObjectName.SERVICE_MANAGER_MONITOR_MBEAN_NAME

Connection configuration MQObjectName.createConnectionConfig

Connection monitor MQObjectName. createConnectionMonitor

Connection manager configuration MQObjectName.CONNECTION_MANAGER_CONFIG_MBEAN_NAME

Connection manager monitor MQObjectName.CONNECTION_MANAGER_MONITOR_MBEAN_NAME

Destination configuration MQObjectName. createDestinationConfig

Destination monitor MQObjectName. createDestinationMonitor

Destination manager configuration MQObjectName.DESTINATION_MANAGER_CONFIG_MBEAN_NAME

Destination manager monitor

MQObjectName.DESTINATION_MANAGER_MONITOR_MBEAN_NAME

Producer manager configuration

MQObjectName.PRODUCER_MANAGER_CONFIG_MBEAN_NAME

Producer manager monitor

MQObjectName.PRODUCER_MANAGER_MONITOR_MBEAN_NAME

Consumer manager configuration MQObjectName.CONSUMER_MANAGER_CONFIG_MBEAN_NAME

Consumer manager monitor MQObjectName.CONSUMER_MANAGER_MONITOR_MBEAN_NAME

Transaction manager configuration MQObjectName.TRANSACTION_MANAGER_CONFIG_MBEAN_NAME

Transaction manager monitor MQObjectName.TRANSACTION_MANAGER_MONITOR_MBEAN_NAME

Cluster configuration MQObjectName.CLUSTER_CONFIG_MBEAN_NAME

Cluster monitor MQObjectName.CLUSTER_MONITOR_MBEAN_NAME

Log configuration MQObjectName.LOG_CONFIG_MBEAN_NAME

Log monitor MQObjectName.LOG_MONITOR_MBEAN_NAME

JVM monitor MQObjectName.JVM_MONITOR_MBEAN_NAME

Table 1–7 (Cont.) Utility Constants and Methods for Object Names

MBean Type Utility Constant or Method

Message Queue MBeans

1-8 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

2

Using the JMX API 2-1

2Using the JMX API

This chapter provides code examples showing how to use the JMX application
programming interface to connect to a broker's MBean server, obtain MBeans for
Message Queue resources, and access their attributes, operations, and notifications.
The chapter consists of the following sections:

■ Interface Packages

■ Utility Classes

■ Connecting to the MBean Server

■ Using MBeans

Interface Packages
The Message Queue 5.0 installation includes two Java packages related to the JMX
interface:

■ com.sun.messaging contains the class AdminConnectionFactory (discussed in
Connecting to the MBean Server), along with a utility class
AdminConnectionConfiguration defining static constants for use in configuring it.

■ com.sun.messaging.jms.management.server contains a collection of utility classes
(listed in Utility Classes) defining useful static constants and methods used in the
JMX interface.

These packages are contained in a Java archive file, imqjmx.jar, included in your
Message Queue installation in the IMQ_HOME/lib directory.

To do application development for the Message Queue JMX API, you must include
this .jar file in your CLASSPATH environment variable.

Utility Classes
The package com.sun.messaging.jms.management.server in the Message Queue JMX
interface contains a collection of utility classes defining useful static constants and
methods for use with Message Queue MBeans. Table 2–1 lists these utility classes; see
the relevant sections of Message Queue MBean Reference and the Message Queue JMX
JavaDoc documentation for further details.

Note: Message Queue's JMX interface requires version 1.5 of the
Java Development Kit (JDK). The functionality described here is not
available under earlier versions of the JDK.

Utility Classes

2-2 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table 2–1 Message Queue JMX Utility Classes

Class Description

MQObjectName Constants and methods for Message Queue MBean object
names

MQNotification Superclass for all Message Queue JMX notifications

BrokerAttributes Names of broker attributes

BrokerOperations Names of broker operations

BrokerNotification Constants and methods related to broker notifications

BrokerState Constants related to broker state

ServiceAttributes Names of connection service attributes

ServiceOperations Names of connection service operations

ServiceNotification Constants and methods related to connection service
notifications

ServiceState Constants related to connection service state

ConnectionAttributes Names of connection attributes

ConnectionOperations Names of connection operations

ConnectionNotification Constants and methods related to connection notifications

DestinationAttributes Names of destination attributes

DestinationOperations Names of destination operations

DestinationNotification Constants and methods related to destination notifications

DestinationType Names of destination types

DestinationState Constants related to destination state

DestinationLimitBehavior Names of destination limit behaviors

DestinationPauseType Constants related to destination pause type

ProducerAttributes Names of message producer attributes

ProducerOperations Names of message producer operations

ProducerInfo Field names in composite data object for message producers

ConsumerAttributes Names of message consumer attributes

ConsumerOperations Names of message consumer operations

ConsumerInfo Field names in composite data object for message consumers

TransactionAttributes Names of transaction attributes

TransactionOperations Names of transaction operations

TransactionNotification Constants and methods related to transaction notifications

TransactionInfo Field names in composite data object for transactions

TransactionState Constants related to transaction state

ClusterAttributes Names of broker cluster attributes

ClusterOperations Names of broker cluster operations

ClusterNotification Constants and methods related to broker cluster notifications

BrokerClusterInfo Field names in composite data object for broker clusters

LogAttributes Names of logging attributes

Connecting to the MBean Server

Using the JMX API 2-3

Connecting to the MBean Server
As defined in the JMX Specification, client applications obtain MBeans through an
MBean server connection, accessed by means of a JMX connector . Message Queue
brokers use the standard JMX infrastructure provided with the Java Development Kit
(JDK) 1.5, which uses remote method invocation (RMI) for communicating between
client and server. Once you obtain a JMX connector, you can use it to obtain an MBean
server connection with which to access the attributes, operations, and notifications of
individual MBeans. This infrastructure is described in "JMX Connection
Infrastructure" in Open Message Queue Administration Guide.

For convenience, Message Queue provides an admin connection factory (class
AdminConnectionFactory), similar in spirit to the familiar Message Queue connection
factory, for creating JMX connectors with a minimum of effort. It is also possible to
dispense with this convenience class and obtain a JMX connector using standard JMX
classes instead. The following sections illustrate these two techniques. While Message
Queue client applications are free to use either method, the first is simpler and is
recommended.

Obtaining a JMX Connector from an Admin Connection Factory
The Message Queue convenience class AdminConnectionFactory (defined in package
com.sun.messaging) encapsulates a predefined set of configuration properties and
hides details, such as the JMX Service URL, involved in obtaining a JMX connector.
Example 2–1 shows the most straightforward use, obtaining a JMX connector at the
default broker Port Mapper port 7676 on host localhost, with the user name and
password both set to the default value of admin. After obtaining the connector, its
getMBeanServerConnection method is called to obtain an MBean server connection for
interacting with Message Queue MBeans.

Example 2–1 Obtaining a JMX Connector from an Admin Connection Factory

import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;

// Create admin connection factory for default host and port (localhost:7676)
 AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector using default user name (admin) and password (admin)
 JMXConnector jmxc = acf.createConnection();

// Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Example 2–2 shows how to reconfigure an admin connection factory's properties to
nondefault values. Instead of using the default broker address (localhost:7676), the
code shown here uses the connection factory's setProperty method to reconfigure it to
connect to a broker at port 9898 on host otherhost. (The names of the connection

LogNotification Constants and methods related to logging notifications

LogLevel Names of logging levels

JVMAttributes Names of Java Virtual Machine (JVM) attributes

Table 2–1 (Cont.) Message Queue JMX Utility Classes

Class Description

Connecting to the MBean Server

2-4 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

factory's configuration properties are defined as static constants in the Message Queue
utility class AdminConnectionConfiguration, defined in package com.sun.messaging.)
The arguments to the factory's createConnection method are then used to supply a
user name and password other than the defaults.

Example 2–2 Configuring an Admin Connection Factory

import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;

// Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

// Configure for specific broker address
 acf.setProperty(AdminConnectionConfiguration.imqAddress, "otherhost:9898");

// Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Obtaining a JMX Connector Without Using an Admin Connection Factory
The generic (non-Message Queue) way of obtaining a JMX connector, as described in
the JMX Specification, is by invoking the static connect method of the standard JMX
class JMXConnectorFactory (see Example 2–3). Client applications may choose to use
this method instead of an admin connection factory in order to avoid dependency on
Message Queue-specific classes.

Example 2–3 Obtaining a JMX Connector Without Using an Admin Connection Factory

import java.util.HashMap;
import javax.management.remote.*;

// Provide credentials required by server for user authentication
 HashMap environment = new HashMap();
 String[] credentials = new String[] {"AliBaba", "sesame"};
 environment.put (JMXConnector.CREDENTIALS, credentials);

// Get JMXServiceURL of JMX Connector (must be known in advance)
 JMXServiceURL url
 = new
JMXServiceURL("service:jmx:rmi:///jndi/rmi://localhost:9999/server");

// Get JMX connector
 JMXConnector jmxc = JMXConnectorFactory.connect(url, environment);

// Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

The JMXConnectorFactory. connect method accepts two parameters:

■ A JMX service URL.

The JMX service URL is an address used for obtaining the JMX connector. It can
either specify the location of a JMX connector stub in an RMI registry or contain a

Using MBeans

Using the JMX API 2-5

connector stub as a serialized object. These options, and the format of the address,
are described in "The JMX Service URL" in Open Message Queue Administration
Guide.

■ An optional environment parameter.

The environment parameter is a hash map mapping attribute names to their
corresponding values. In particular, the CREDENTIALS attribute specifies the
authentication credentials (user name and password) to be used in establishing a
connection. The hash-map key for this attribute is defined as a static constant,
CREDENTIALS, in the JMXConnector interface; the corresponding value is a
2-element string array containing the user name at index 0 and the password at
index 1.

Using MBeans
Once you have obtained an MBean server connection, you can use it to communicate
with Message Queue (and other) MBeans and to access their attributes, operations,
and notifications. The following sections describe how this is done.

Accessing MBean Attributes
The MBean server connection's getAttribute method accepts the object name of an
MBean along with a string representing the name of one of its attributes, and returns
the value of the designated attribute. Example 2–4 shows an example, obtaining and
printing the value of a destination's MaxNumProducers attribute from its configuration
MBean (described in Destination Configuration).

Example 2–4 Getting an Attribute Value

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class GetAttrValue
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName destConfigName
 = MQObjectName.createDestinationConfig(DestinationType.QUEUE,
"MyQueue");

 // Get and print attribute value
 Integer attrValue
 = (Integer)mbsc.getAttribute(destConfigName,
 DestinationAttributes.MAX_NUM_

Using MBeans

2-6 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

PRODUCERS);
 System.out.println("Maximum number of producers: " + attrValue);

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

There is also an MBeanServerConnection method named getAttributes, which
accepts an MBean object name and an array of attribute name strings, and returns a
result of class AttributeList. This is an array of Attribute objects, each of which
provides methods (getName and getValue) for retrieving the name and value of one of
the requested attributes. Example 2–5 shows a modified version of Example 2–4 that
uses getAttributes to retrieve the values of a destination's MaxNumProducers and
maxNumActiveConsumers attributes from its configuration MBean (see Destination
Configuration).

Example 2–5 Getting Multiple Attribute Values

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class GetAttrValues
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName destConfigName
 = MQObjectName.createDestinationConfig(DestinationType.QUEUE,
"MyQueue");

 // Create array of attribute names
 String attrNames[] =
 { DestinationAttributes.MAX_NUM_PRODUCERS,
 DestinationAttributes.MAX_NUM_ACTIVE_CONSUMERS
 };

 // Get attributes
 AttributeList attrList = mbsc.getAttributes(destConfigName,
attrNames);

 // Extract and print attribute values

Using MBeans

Using the JMX API 2-7

 Object attrValue;

 attrValue = attrList.get(0).getValue();
 System.out.println("Maximum number of producers: " +
attrValue.toString());

 attrValue = attrList.get(1).getValue();
 System.out.println("Maximum number of active consumers: " +
attrValue.toString());

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

To set the value of an attribute, use the MBeanServerConnection method
setAttribute. This takes an MBean object name and an Attribute object specifying
the name and value of the attribute to be set. Example 2–6 uses this method to set a
destination's MaxNumProducers attribute to 25.

Example 2–6 Setting an Attribute Value

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class SetAttrValue
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName destConfigName
 = MQObjectName.createDestinationConfig(DestinationType.QUEUE,
"MyQueue");

 // Create attribute object
 Attribute attr = new Attribute(DestinationAttributes.MAX_NUM_
PRODUCERS, 25);

 // Set attribute value
 mbsc.setAttribute(destConfigName, attr);

Using MBeans

2-8 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

Just as for getting attribute values, there is an MBeanServerConnection method named
setAttributes for setting the values of multiple attributes at once. You supply an
MBean object name and an attribute list giving the names and values of the attributes
to be set. Example 2–7 illustrates the use of this method to set a destination's
MaxNumProducers and MaxNumActiveConsumers attributes to 25 and 50, respectively.

Example 2–7 Setting Multiple Attribute Values

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class SetAttrValues
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName destConfigName
 = MQObjectName.createDestinationConfig(DestinationType.QUEUE,
"MyQueue");

 // Create and populate attribute list

 AttributeList attrList = new AttributeList();
 Attribute attr;

 attr = new Attribute(DestinationAttributes.MAX_NUM_PRODUCERS, 25);
 attrList.add(attr);

 attr = new Attribute(DestinationAttributes.MAX_NUM_ACTIVE_
CONSUMERS, 50);
 attrList.add(attr);

 // Set attribute values
 mbsc.setAttributes(destConfigName, attrList);

Using MBeans

Using the JMX API 2-9

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

Invoking MBean Operations
To invoke an MBean operation, use the MBeanServerConnection method invoke. The
first two parameters to this method are an MBean object name and a string specifying
the name of the operation to be invoked. (The two remaining parameters are used for
supplying parameters to the invoked operation, and are discussed in the next
example.) The method returns an object that is the operation's return value (if any).
Example 2–8 shows the use of this method to pause the jms connection service by
invoking the pause operation of its service configuration MBean (see Service
Configuration).

Example 2–8 Invoking an Operation

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class InvokeOp
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName serviceConfigName =
MQObjectName.createServiceConfig("jms");

 // Invoke operation
 mbsc.invoke(serviceConfigName, ServiceOperations.PAUSE, null,
null);

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());

Using MBeans

2-10 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

 e.printStackTrace();
 }
 }
 }

When the operation being invoked requires parameters, you supply them in an array
as the third parameter to the MBeanServerConnection.invoke method. The method's
fourth parameter is a signature array giving the class or interface names of the invoked
operation's parameters. Example 2–9 shows an illustration, invoking the destination
manager configuration MBean's create operation to create a new queue destination
named MyQueue with the same attributes that were set in Example 2–7. The create
operation (see Destination Manager Configuration) takes three parameters: the type
(QUEUE or TOPIC) and name of the new destination and an attribute list specifying any
initial attribute values to be set. The example shows how to set up a parameter array
(opParams) containing these values, along with a signature array (opSig) giving their
classes, and pass them to the invoke method.

Example 2–9 Invoking an Operation with Parameters

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class InvokeOpWithParams
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName destMgrConfigName
 = new ObjectName(MQObjectName.DESTINATION_MANAGER_CONFIG_
MBEAN_NAME);

 // Create and populate attribute list

 AttributeList attrList = new AttributeList();
 Attribute attr;

 attr = new Attribute(DestinationAttributes.MAX_NUM_PRODUCERS, 25);
 attrList.add(attr);

 attr = new Attribute(DestinationAttributes.MAX_NUM_ACTIVE_
CONSUMERS, 50);
 attrList.add(attr);

 // Create operation's parameter and signature arrays

 Object opParams[] = { DestinationType.QUEUE,

Using MBeans

Using the JMX API 2-11

 "MyQueue",
 attrList
 };

 String opSig[] = { String.class.getName(),
 String.class.getName(),
 attrList.getClass().getName()
 };

 // Invoke operation
 mbsc.invoke(destMgrConfigName, DestinationOperations.CREATE,
opParams, opSig);

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

Example 2–10 shows a more elaborate example combining the use of MBean
operations and attributes. The destination manager monitor MBean operation
getDestinations (see Destination Manager Monitor) returns an array of object names
of the destination monitor MBeans for all current destinations. The example then
iterates through the array, printing the name, destination type (QUEUE or TOPIC), and
current state (such as RUNNING or PAUSED) for each destination.

Example 2–10 Combining Operations and Attributes

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class OpsAndAttrs
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name for destination manager monitor MBean
 ObjectName destMgrMonitorName
 = new ObjectName(MQObjectName.DESTINATION_MANAGER_MONITOR_
MBEAN_NAME);

 // Get destination object names
 ObjectName destNames[] = mbsc.invoke(destMgrMonitorName,

Using MBeans

2-12 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

 DestinationOperations.GET_
DESTINATIONS,
 null,
 null);

 // Step through array of object names, printing information for each
destination

 System.out.println("Listing destinations: ");

 ObjectName eachDestName;
 Object attrValue;

 for (int i = 0; i < destNames.length; ++i)
 { eachDestName = destNames[i];

 attrValue = mbsc.getAttribute(eachDestName,
DestinationAttributes.NAME);
 System.out.println("\tName: " + attrValue);

 attrValue = mbsc.getAttribute(eachDestName,
DestinationAttributes.TYPE);
 System.out.println("\tTypeYPE: " + attrValue);

 attrValue = mbsc.getAttribute(eachDestName,
DestinationAttributes.STATE_LABEL);
 System.out.println("\tState: " + attrValue);

 System.out.println("");
 }

 // Close JMX connector
 jmxc.close();
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }
 }
 }

Some of the Message Queue MBeans' operations and attributes return a composite
data object (implementing the JMX CompositeData interface). This type of object
consists of a collection of data values accessed by means of associative lookup keys.
The specific keys vary from one MBean to another, and are described in the relevant
sections of Message Queue MBean Reference. Example 2–11 shows an illustration,
invoking the consumer manager MBean's GetConsumerInfo operation (see Consumer
Manager Monitor to obtain an array of composite data objects describing all current
message consumers. It then steps through the array, using the lookup keys listed in
Table 3–63 to retrieve and print the characteristics of each consumer.

Example 2–11 Using a Composite Data Object

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

Using MBeans

Using the JMX API 2-13

public class CompData
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name
 ObjectName consumerMgrMonitorName
 = new ObjectName(MQObjectName.CONSUMER_MANAGER_MONITOR_MBEAN_
NAME);

 // Invoke operation
 Object result
 = mbsc.invoke(consumerMgrMonitorName,
 ConsumerOperations.GET_CONSUMER_INFO,
 null,
 null);

 // Typecast result to an array of composite data objects
 CompositeData cdArray[] = (CompositeData[])result;

 // Step through array, printing information for each consumer

 if (cdArray == null)
 { System.out.println("No message consumers found");
 }
 else
 { for (int i = 0; i < cdArray.length; ++i)
 { CompositeData cd = cdArray[i];

 System.out.println("Consumer ID: "
 + cd.get(ConsumerInfo.CONSUMER_
ID));
 System.out.println("User: "
 + cd.get(ConsumerInfo.USER));
 System.out.println("Host: "
 + cd.get(ConsumerInfo.HOST));
 System.out.println("Connection service: "
 + cd.get(ConsumerInfo.SERVICE_
NAME));
 System.out.println("Acknowledgment mode: "
 +
cd.get(ConsumerInfo.ACKNOWLEDGE_MODE_LABEL));
 System.out.println("Destination name: "
 +
cd.get(ConsumerInfo.DESTINATION_NAME));
 System.out.println("Destination type: "
 +
cd.get(ConsumerInfo.DESTINATION_TYPE));
 }
 }
 }

Using MBeans

2-14 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }

 finally
 { if (jmxc != null)
 { try
 { jmxc.close();
 }
 catch (IOException ioe)
 { System.out.println("I/O exception occurred: " +
ioe.toString());
 ioe.printStackTrace();
 }
 }
 }
 }
 }

Receiving MBean Notifications
To receive notifications from an MBean, you must register a notification listener with
the MBean server. This is an object implementing the JMX interface
NotificationListener, which consists of the single method handleNotification. In
registering the listener with the MBean server (using the MBeanServerConnection
method addNotificationListener), you supply the object name of the MBean from
which you wish to receive notifications, along with a notification filter specifying
which types of notification you wish to receive. (You can also provide an optional
handback object to be passed to your listener whenever it is invoked, and which you
can use for any purpose convenient to your application.) The MBean server will then
call your listener's handleNotification method whenever the designated MBean
broadcasts a notification satisfying the filter you specified.

The notification listener's handleNotification method receives two parameters: a
notification object (belonging to the JMX class Notification) describing the
notification being raised, along with the handback object, if any, that you supplied
when you registered the listener. The notification object provides methods for
retrieving various pieces of information about the notification, such as its type, the
MBean raising it, its time stamp, and an MBean-dependent user data object and
message string further describing the notification. The notifications raised by Message
Queue MBeans belong to Message Queue-specific subclasses of Notification, such as
BrokerNotification, ServiceNotification, and DestinationNotification, which
add further information retrieval methods specific to each particular type of
notification; see the relevant sections of Message Queue MBean Reference for details.

Example 2–12 shows a notification listener for responding to Message Queue service
notifications, issued by a service manager monitor MBean. On receiving a notification
belonging to the Message Queue class ServiceNotification, the listener simply prints
an informational message containing the notification's type and the name of the
connection service affected.

Example 2–12 Notification Listener

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.jms.management.server.*;

Using MBeans

Using the JMX API 2-15

public class ServiceNotificationListener implements NotificationListener
 {
 public void handleNotification (Notification notification,
 Object handback)
 {
 if (notification instanceOf ServiceNotification)
 { ServiceNotification n = (ServiceNotification)notification;
 }
 else
 { System.err.println("Wrong type of notification for listener");
 return;
 }

 System.out.println("\nReceived service notification: ");
 System.out.println("\tNotification type: " + n.getType());
 System.out.println("\tService name: " + n.getServiceName());

 System.out.println("");
 }
 }

Example 2–13 shows how to register the notification listener from Example 2–12, using
the MBeanServerConnection method addNotificationListener. The notification filter
is an object of the standard JMX class NotificationFilterSupport; the calls to this
object's enableType method specify that the listener should be invoked whenever a
connection service is paused or resumed. The listener itself is an instance of class
ServiceNotificationListener, as defined in Example 2–12.

Example 2–13 Registering a Notification Listener

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;
import java.io.IOException

public class NotificationService
 {
 public static void main (String[] args)
 {
 try
 { // Create admin connection factory
 AdminConnectionFactory acf = new AdminConnectionFactory();

 // Get JMX connector, supplying user name and password
 JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

 // Get MBean server connection
 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 // Create object name for service manager monitor MBean
 ObjectName svcMgrMonitorName
 = new ObjectName(MQObjectName.SERVICE_MANAGER_MONITOR_MBEAN_
NAME);

 // Create notification filter
 NotificationFilterSupport myFilter = new

Using MBeans

2-16 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

NotificationFilterSupport();
 myFilter.enableType(ServiceNotification.SERVICE_PAUSE);
 myFilter.enableType(ServiceNotification.SERVICE_RESUME);

 // Create notification listener
 ServiceNotificationListener myListener = new
ServiceNotificationListener();
 mbsc.addNotificationListener(svcMgrMonitorName, myListener,
myFilter, null);

 ...
 }

 catch (Exception e)
 { System.out.println("Exception occurred: " + e.toString());
 e.printStackTrace();
 }

 finally
 { if (jmxc != null)
 { try
 { jmxc.close();
 }
 catch (IOException ioe)
 { System.out.println("I/O exception occurred: " +
ioe.toString());
 ioe.printStackTrace();
 }
 }
 }
 }
 }

3

Message Queue MBean Reference 3-1

3Message Queue MBean Reference

This chapter describes the JMX MBeans that allow you to configure and monitor a
Message Queue broker. It consists of the following sections:

■ Brokers

■ Connection Services

■ Connections

■ Destinations

■ Message Producers

■ Message Consumers

■ Transactions

■ Broker Clusters

■ Logging

■ Java Virtual Machine

Brokers
This section describes the MBeans used for managing brokers:

■ The broker configuration MBean configures a broker.

■ The broker monitor MBean monitors a broker.

The following subsections describe each of these MBeans in detail.

Broker Configuration
The broker configuration MBean is used for configuring a broker. There is one such
MBean for each broker.

Object Name
The broker configuration MBean has the following object name:

com.sun.messaging.jms.server:type=Broker,subtype=Config

A string representing this object name is defined as a static constant BROKER_CONFIG_
MBEAN_NAME in the utility class MQObjectName.

Brokers

3-2 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Attributes
The broker configuration MBean has the attributes shown in Table 3–1. The names of
these attributes are defined as static constants in the utility class BrokerAttributes.

Operations
The broker configuration MBean supports the operations shown in Table 3–2. The
names of these operations are defined as static constants in the utility class
BrokerOperations.

Table 3–1 Broker Configuration Attributes

Name Type Settable? Description

BrokerID String No Broker identifier

Must be a unique alphanumeric string of no more than n - 13 characters,
where n is the maximum table name length allowed by the database. No
two running brokers may have the same broker identifier.

For brokers using a JDBC-based persistent data store, this string is
appended to the names of all database tables to make them unique in the
case where more than one broker instance is using the same database. If a
database is not used as the persistent data store, the value of this attribute
is null.

Note: For high-availability brokers, database table names use the
ClusterID attribute (see Table 3–74) instead.

Version String No Broker version

InstanceName String No Broker instance name

Example:

imqbroker

Port Integer Yes Port number of Port Mapper

Table 3–2 Broker Configuration Operations

Name Parameters
Result
Type Description

 shutdown nofailover
(Boolean)

time (Long)

None Shut down broker

If nofailover is false or null, another broker will attempt to take
over for this broker when it shuts down; this applies only to brokers
in a high-availability (HA) cluster. If nofailover is true, no such
takeover attempt will occur.

The time parameter specifies the interval, in seconds, before the
broker actually shuts down; for immediate shutdown, specify 0 or
null.

 shutdown None None Shut down broker immediately

If the broker is part of a high-availability (HA) cluster, another
broker will attempt to take over for it.

Equivalent to shutdown(Boolean.FALSE, new Long(0)).

 restart None None Restart broker

 quiesce None None Quiesce broker

The broker will refuse any new connections; existing connections
will continue to be served.

 unquiesce None None Unquiesce broker

The broker will again accept new connections.

Brokers

Message Queue MBean Reference 3-3

 takeover1 brokerID
(String)

None Initiate takeover from specified broker

The desired broker is designated by its broker identifier (brokerID).

 getProperty propertyName
(String)

String Get value of configuration property

The desired property is designated by its name (propertyName)

 resetMetrics None None Reset metrics

Resets to zero all metrics in monitor MBeans that track cumulative,
peak, or average counts. The following attributes are affected:

Service monitor

■ NumConnectionsOpened

■ NumConnectionsRejected

■ NumMsgsIn

■ NumMsgsOut

■ MsgBytesIn

■ MsgBytesOut

■ NumPktsIn

■ NumPktsOut

■ PktBytesIn

■ PktBytesOut

Service manager monitor

■ NumMsgsIn

■ NumMsgsOut

■ MsgBytesIn

■ MsgBytesOut

■ NumPktsIn

■ NumPktsOut

■ PktBytesIn

■ PktBytesOut

Table 3–2 (Cont.) Broker Configuration Operations

Name Parameters
Result
Type Description

Brokers

3-4 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Notification
The broker configuration MBean supports the notification shown in Table 3–3.

Broker Monitor
The broker monitor MBean is used for monitoring a broker. There is one such MBean
for each broker.

Object Name
The broker monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Broker,subtype=Monitor

A string representing this object name is defined as a static constant BROKER_MONITOR_
MBEAN_NAME in the utility class MQObjectName.

Connection manager monitor

■ NumConnectionsOpened

■ NumConnectionsRejected

Destination monitor

■ PeakNumConsumers

■ AvgNumConsumers

■ PeakNumActiveConsumers

■ AvgNumActiveConsumers

■ PeakNumBackupConsumers

■ AvgNumBackupConsumers

■ PeakNumMsgs

■ AvgNumMsgs

■ NumMsgsIn

■ NumMsgsOut

■ MsgBytesIn

■ MsgBytesOut

■ PeakMsgBytes

■ PeakTotalMsgBytes

■ AvgTotalMsgBytes

Transaction manager monitor

■ NumTransactionsCommitted

■ NumTransactionsRollback

1 HA clusters only

Table 3–3 Broker Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Table 3–2 (Cont.) Broker Configuration Operations

Name Parameters
Result
Type Description

Brokers

Message Queue MBean Reference 3-5

Attributes
The broker monitor MBean has the attributes shown in Table 3–4. The names of these
attributes are defined as static constants in the utility class BrokerAttributes.

Notifications
The broker monitor MBean supports the notifications shown in Table 3–5. These
notifications are instances of the Message Queue JMX classes BrokerNotification and
ClusterNotification, and their names are defined as static constants in those classes.

Table 3–4 Broker Monitor Attributes

Name Type Settable? Description

BrokerID String No Broker identifier

Must be a unique alphanumeric string of no more than n - 13 characters,
where n is the maximum table name length allowed by the database. No
two running brokers may have the same broker identifier.

For brokers using a JDBC-based persistent data store, this string is
appended to the names of all database tables to make them unique in
the case where more than one broker instance is using the same
database. If a database is not used as the persistent data store, the value
of this attribute is null.

Note: For high-availability brokers, database table names use the
ClusterID attribute (see Table 3–79) instead.

Version String No Broker version

InstanceName String No Broker instance name

Port Integer No Port number of Port Mapper

ResourceState String No Current broker resource state:

■ green: < 80% memory utilization

■ yellow: 80-90% memory utilization

■ orange: 90-98% memory utilization

■ red:> 98% memory utilization

Note: The threshold values shown are the default thresholds for
triggering the various states; these can be changed by setting the broker
configuration properties

■ imq.green.threshold

■ imq.yellow.threshold

■ imq.orange.threshold

■ imq.red.threshold

Embedded Boolean No Is broker embedded (started from within another process)?

Table 3–5 Broker Monitor Notifications

Name Utility Constant Description

mq.broker.shutdown.start BrokerNotification.BROKER_SHUTDOWN_START Broker has begun
shutting down

mq.broker.quiesce.start BrokerNotification.BROKER_QUIESCE_START Broker has begun
quiescing

mq.broker.quiesce.complete BrokerNotification.BROKER_QUIESCE_
COMPLETE

Broker has finished
quiescing

Brokers

3-6 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table 3–6 shows the methods defined in class BrokerNotification for obtaining
details about a broker monitor notification. See Table 3–84 for the corresponding
methods of class ClusterNotification.

mq.broker.takeover.start1 BrokerNotification.BROKER_TAKEOVER_START Broker has begun
taking over persistent
data store from
another broker

mq.broker.takeover.complete1 BrokerNotification.BROKER_TAKEOVER_
COMPLETE

Broker has finished
taking over persistent
data store from
another broker

mq.broker.takeover.fail1 BrokerNotification.BROKER_TAKEOVER_FAIL Attempted takeover
has failed

mq.broker.resource.state.change BrokerNotification.BROKER_RESOURCE_
STATE_CHANGE

Broker's resource
state has changed

mq.cluster.broker.join ClusterNotification.CLUSTER_BROKER_JOIN Broker has joined a
cluster

1 HA clusters only

Table 3–6 Data Retrieval Methods for Broker Monitor Notifications

Method Result Type Description

getBrokerID String Broker identifier

getBrokerAddress String Broker address, in the form hostName:portNumber

Example:

host1:3000

getFailedBrokerID1

1 HA clusters only

String Broker identifier of broker being taken over

getOldResourceState String Broker's previous resource state:

■ green: < 80% memory utilization

■ yellow: 80-90% memory utilization

■ orange: 90-98% memory utilization

■ red:> 98% memory utilization

Note: The threshold values shown are the default thresholds for
triggering the various states; these can be changed by setting the
broker configuration properties

■ imq.green.threshold

■ imq.yellow.threshold

■ imq.orange.threshold

■ imq.red.threshold

getNewResourceState String Broker's new resource state (see getOldResourceState, above, for
possible values)

getHeapMemoryUsage MemoryUsage Broker's current heap memory usage

The value returned is an object of class MemoryUsage (defined in the
package java.lang.management).

Table 3–5 (Cont.) Broker Monitor Notifications

Name Utility Constant Description

Connection Services

Message Queue MBean Reference 3-7

Connection Services
This section describes the MBeans used for managing connection services:

■ The service configuration MBean configures a connection service.

■ The service monitor MBean monitors a connection service.

■ The service manager configuration MBean manages service configuration MBeans.

■ The service manager monitor MBean manages service monitor MBeans.

The following subsections describe each of these MBeans in detail.

Service Configuration
The service configuration MBean is used for configuring a connection service. There is
one such MBean for each service.

Object Name
The service configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Service,subtype=Config,name=serviceName

where serviceName is the name of the connection service (see Table 3–7). The utility
class MQObjectName provides a static method, createServiceConfig, for constructing
object names of this form.

Attributes
The service configuration MBean has the attributes shown in Table 3–8. The names of
these attributes are defined as static constants in the utility class ServiceAttributes.

Table 3–7 Connection Service Names for Service Configuration MBeans

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Table 3–8 Service Configuration Attributes

Name Type Settable? Description

Name String No Service name

See Table 3–7 for possible values.

Port Integer Yes Port number (jms, ssljms, admin, and ssladmin services only)

A value of 0 specifies that the port is to be dynamically allocated by
the Port Mapper; to learn the actual port currently used by the
service, use the Port attribute of the service monitor MBean.

Connection Services

3-8 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The service configuration MBean supports the operations shown in Table 3–9. The
names of these operations are defined as static constants in the utility class
ServiceOperations.

Notification
The service configuration MBean supports the notification shown in Table 3–10.

Service Monitor
The service monitor MBean is used for monitoring a connection service. There is one
such MBean for each service.

Object Name
The service monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Service,subtype=Monitor,name=serviceName

where serviceName is the name of the connection service (see Table 3–11). The utility
class MQObjectName provides a static method, createServiceMonitor, for constructing
object names of this form.

MinThreads Integer Yes Minimum number of threads assigned to service

Must be greater than 0.

MaxThreads Integer Yes Maximum number of threads assigned to service

Must be greater than or equal to MinThreads.

ThreadPoolModel String No Threading model for thread pool management:

■ dedicated: Two dedicated threads per connection, one for
incoming and one for outgoing messages

■ shared: Connections processed by shared thread when sending
or receiving messages (jms and admin services only)

Table 3–9 Service Configuration Operations

Name Parameters Result Type Description

pause None None Pause service (jms, ssljms, httpjms, and httpsjms services only)

resume None None Resume service (jms, ssljms, httpjms, and httpsjms services only)

Table 3–10 Service Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Table 3–11 Connection Service Names for Service Monitor MBeans

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

httpjms Normal HTTP

Table 3–8 (Cont.) Service Configuration Attributes

Name Type Settable? Description

Connection Services

Message Queue MBean Reference 3-9

Attributes
The service monitor MBean has the attributes shown in Table 3–12. The names of these
attributes are defined as static constants in the utility class ServiceAttributes.

Table 3–13 shows the possible values for the State and StateLabel attributes. These
values are defined as static constants in the utility class ServiceState.

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Table 3–12 Service Monitor Attributes

Name Type Settable? Description

Name String No Service name

See Table 3–11 for possible values.

Port Integer No Port number currently used by service

State Integer No Current state

See Table 3–13 for possible values.

StateLabel String No String representation of current state:

Useful for displaying the state in human-readable form,
such as in the Java Monitoring and Management Console
(jconsole).

See Table 3–13 for possible values.

NumConnections Integer No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker
started

NumConnectionsRejected Long No Cumulative number of connections rejected since broker
started

NumActiveThreads Integer No Current number of threads actively handling connections

NumProducers Integer No Current number of message producers

NumConsumers Integer No Current number of message consumers

NumMsgsIn Long No Cumulative number of messages received since broker
started

NumMsgsOut Long No Cumulative number of messages sent since broker started

MsgBytesIn Long No Cumulative size in bytes of messages received since broker
started

MsgBytesOut Long No Cumulative size in bytes of messages sent since broker
started

NumPktsIn Long No Cumulative number of packets received since broker started

NumPktsOut Long No Cumulative number of packets sent since broker started

PktBytesIn Long No Cumulative size in bytes of packets received since broker
started

PktBytesOut Long No Cumulative size in bytes of packets sent since broker started

Table 3–11 (Cont.) Connection Service Names for Service Monitor MBeans

Service Name Service Type Protocol Type

Connection Services

3-10 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The service monitor MBean supports the operations shown in Table 3–14. The names
of these operations are defined as static constants in the utility class
ServiceOperations.

Notifications
The service monitor MBean supports the notifications shown in Table 3–15. These
notifications are instances of the Message Queue JMX classes ServiceNotification
and ConnectionNotification, and their names are defined as static constants in those
classes.

Table 3–16 shows the method defined in class ServiceNotification for obtaining
details about a service monitor notification. See Table 3–31 for the corresponding
methods of class ConnectionNotification.

Table 3–13 Connection Service State Values

Value Utility Constant
String
Representation Meaning

0 ServiceState.RUNNING RUNNING Service running

1 ServiceState.PAUSED PAUSED Service paused

2 ServiceState.QUIESCED QUIESCED Service quiesced

-1 ServiceState.UNKNOWN UNKNOWN Service state unknown

Table 3–14 Service Monitor Operations

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection monitor MBeans for all current
connections

getProducerIDs None String[] Producer identifiers of all current message producers

getConsumerIDs None String[]

Consumer identifiers of all current message consumers

Table 3–15 Service Monitor Notifications

Name Utility Constant Description

mq.service.pause ServiceNotification.SERVICE_PAUSE Service paused

mq.service.resume ServiceNotification.SERVICE_RESUME Service resumed

mq.connection.open ConnectionNotification.CONNECTION_OPEN Connection opened

mq.connection.reject ConnectionNotification.CONNECTION_REJECT Connection rejected

mq.connection.close ConnectionNotification.CONNECTION_CLOSE Connection closed

Table 3–16 Data Retrieval Method for Service Monitor Notifications

Method Result Type Description

getServiceName String Service name

See Table 3–11 for possible values.

Connection Services

Message Queue MBean Reference 3-11

Service Manager Configuration
Each broker has a single service manager configuration MBean, used for managing all
of the broker's service configuration MBeans.

Object Name
The service manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager,subtype=Config

A string representing this object name is defined as a static constant SERVICE_MANAGER_
CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The service manager configuration MBean has the attributes shown in Table 3–17. The
names of these attributes are defined as static constants in the utility class
ServiceAttributes.

Operations
The service manager configuration MBean supports the operations shown in
Table 3–18. The names of these operations are defined as static constants in the utility
class ServiceOperations.

Service Manager Monitor
Each broker has a single service manager monitor MBean, used for managing all of the
broker's service monitor MBeans.

Object Name
The service manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager,subtype=Monitor

A string representing this object name is defined as a static constant SERVICE_MANAGER_
MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The service manager monitor MBean has the attributes shown in Table 3–19. The
names of these attributes are defined as static constants in the utility class
ServiceAttributes.

Table 3–17 Service Manager Configuration Attributes

Name Type Settable? Description

MinThreads Integer No Total minimum number of threads for all active services

MaxThreads Integer No Total maximum number of threads for all active services

Table 3–18 Service Manager Configuration Operations

Name Parameters Result Type Description

 getServices None ObjectName[] Object names of service configuration MBeans for all services

 pause None None Pause all services except admin and ssladmin

 resume None None Resume all services

Connection Services

3-12 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operation
The service manager monitor MBean supports the operation shown in Table 3–20. The
name of this operation is defined as a static constant in the utility class
ServiceOperations.

Notifications
The service manager monitor MBean supports the notifications shown in Table 3–21.
These notifications are instances of the Message Queue JMX class
ServiceNotification, and their names are defined as static constants in that class.

Table 3–22 shows the method defined in class ServiceNotification for obtaining
details about a service manager monitor notification.

Table 3–19 Service Manager Monitor Attributes

Name Type Settable? Description

NumServices Integer No Number of connection services

NumActiveThreads Integer No Total current number of threads actively handling connections for all
services

NumMsgsIn Long No Total cumulative number of messages received by all services since
broker started

NumMsgsOut Long No Total cumulative number of messages sent by all services since
broker started

MsgBytesIn Long No Total cumulative size in bytes of messages received by all services
since broker started

MsgBytesOut Long No Total cumulative size in bytes of messages sent by all services since
broker started

NumPktsIn Long No Total cumulative number of packets received by all services since
broker started

NumPktsOut Long No Total cumulative number of packets sent by all services since broker
started

PktBytesIn Long No Total cumulative size in bytes of packets received by all services
since broker started

PktBytesOut Long No Total cumulative size in bytes of packets sent by all services since
broker started

Table 3–20 Service Manager Monitor Operation

Name Parameters Result Type Description

getServices None ObjectName[] Object names of all service monitor MBeans

Table 3–21 Service Manager Monitor Notifications

Name Utility Constant Description

mq.service.pause ServiceNotification.SERVICE_PAUSE Service paused

mq.service.resume ServiceNotification.SERVICE_RESUME Service resumed

Connections

Message Queue MBean Reference 3-13

Connections
This section describes the MBeans used for managing connections:

■ The connection configuration MBean configures a connection.

■ The connection monitor MBean monitors a connection.

■ The connection manager configuration MBean manages connection configuration
MBeans.

■ The connection manager monitor MBean manages connection monitor MBeans.

The following subsections describe each of these MBeans in detail.

Connection Configuration
The connection configuration MBean is used for configuring a connection. There is one
such MBean for each connection.

Object Name
The connection configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Connection,subtype=Config,id=connectionID

where connectionID is the connection identifier. For example:

com.sun.messaging.jms.server:type=Connection,subtype=Config,
id=7853717387765338368

The utility class MQObjectName provides a static method, createConnectionConfig, for
constructing object names of this form.

Attribute
The connection configuration MBean has the attribute shown in Table 3–23. The name
of this attribute is defined as a static constant in the utility class
ConnectionAttributes.

Connection Monitor
The connection monitor MBean is used for monitoring a connection. There is one such
MBean for each connection.

Object Name
The connection monitor MBean has an object name of the following form:

Table 3–22 Data Retrieval Method for Service Manager Monitor Notifications

Method Result Type Description

getServiceName String Service name

See Table 3–11 for possible values.

Table 3–23 Connection Configuration Attribute

Name Type Settable? Description

ConnectionID String No Connection identifier

Connections

3-14 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

com.sun.messaging.jms.server:type=Connection,subtype=Monitor,id=connectionI
D

where connectionID is the connection identifier. For example:

com.sun.messaging.jms.server:type=Connection,subtype=Monitor,
id=7853717387765338368

The utility class MQObjectName provides a static method, createConnectionMonitor,
for constructing object names of this form.

Attributes
The connection monitor MBean has the attributes shown in Table 3–24. The names of
these attributes are defined as static constants in the utility class
ConnectionAttributes.

Operations
The connection monitor MBean supports the operations shown in Table 3–25. The
names of these operations are defined as static constants in the utility class
ConnectionOperations.

Connection Manager Configuration
Each broker has a single connection manager configuration MBean, used for managing
all of the broker's connection configuration MBeans.

Table 3–24 Connection Monitor Attributes

Name Type Settable? Description

ConnectionID String No Connection identifier

Host String No Host from which connection was made

Port Integer No Port number

ServiceName String No Connection service name

User String No User name

ClientID String No Client identifier

ClientPlatform String No String describing client platform

NumProducers Integer No Current number of associated message producers

NumConsumers Integer No Current number of associated message consumers

Table 3–25 Connection Monitor Operations

Name Parameters Result Type Description

getService None ObjectName Object name of service monitor MBean for
associated connection service

 getTemporaryDestinations None ObjectName[] Object names of destination monitor MBeans
for all associated temporary destinations

getProducerIDs None String[] Producer identifiers of all associated message
producers

getConsumerIDs None String[] Consumer identifiers of all associated message
consumers

Connections

Message Queue MBean Reference 3-15

Object Name
The connection manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ConnectionManager,subtype=Config

A string representing this object name is defined as a static constant CONNECTION_
MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The connection manager configuration MBean has the attribute shown in Table 3–26.
The name of this attribute is defined as a static constant in the utility class
ConnectionAttributes.

Operations
The connection manager configuration MBean supports the operations shown in
Table 3–27. The names of these operations are defined as static constants in the utility
class ConnectionOperations.

Connection Manager Monitor
Each broker has a single connection manager monitor MBean, used for managing all of
the broker's connection monitor MBeans.

Object Name
The connection manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ConnectionManager,subtype=Monitor

A string representing this object name is defined as a static constant CONNECTION_
MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The connection manager monitor MBean has the attributes shown in Table 3–28. The
names of these attributes are defined as static constants in the utility class
ConnectionAttributes.

Table 3–26 Connection Manager Configuration Attribute

Name Type Settable? Description

NumConnections Integer No Number of current connections

Table 3–27 Connection Manager Configuration Operations

Name Parameters Result Type Description

 getConnections None ObjectName[] Object names of connection configuration MBeans
for all current connections

 destroy connectionID (Long) None Destroy connection

The desired connection is designated by its
connection identifier (connectionID).

Destinations

3-16 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operation
The connection manager monitor MBean supports the operation shown in Table 3–29.
The name of this operation is defined as a static constant in the utility class
ConnectionOperations.

Notifications
The connection manager monitor MBean supports the notifications shown in
Table 3–30. These notifications are instances of the Message Queue JMX class
ConnectionNotification, and their names are defined as static constants in that class.

Table 3–31 shows the methods defined in class ConnectionNotification for obtaining
details about a connection manager monitor notification.

Destinations
This section describes the MBeans used for managing destinations:

■ The destination configuration MBean configures a destination.

■ The destination monitor MBean monitors a destination.

■ The destination manager configuration MBean manages destination configuration
MBeans.

Table 3–28 Connection Manager Monitor Attributes

Name Type Settable? Description

NumConnections Integer No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker
started

NumConnectionsRejected Long No Cumulative number of connections rejected since broker
started

Table 3–29 Connection Manager Monitor Operation

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection monitor MBeans for all current
connections

Table 3–30 Connection Manager Monitor Notifications

Name Utility Constant Description

mq.connection.open ConnectionNotification.CONNECTION_OPEN Connection opened

mq.connection.reject ConnectionNotification.CONNECTION_REJECT Connection rejected

mq.connection.close ConnectionNotification.CONNECTION_CLOSE Connection closed

Table 3–31 Data Retrieval Methods for Connection Manager Monitor Notifications

Method Result Type Description

getConnectionID String Connection identifier

getRemoteHost String Host from which connection was made

getServiceName String Connection service name

getUserName String User name

Destinations

Message Queue MBean Reference 3-17

■ The destination manager monitor MBean manages destination monitor MBeans.

The following subsections describe each of these MBeans in detail.

Destination Configuration
The destination configuration MBean is used for configuring a destination. There is
one such MBean for each destination.

Object Name
The destination configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination,subtype=Config,
desttype=destinationType,name=destinationName

where destinationType is one of the destination types shown in Table 3–33 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination,subtype=Config,desttype=t,
name="Dest"

The utility class MQObjectName provides a static method, createDestinationConfig,
for constructing object names of this form.

Attributes
The destination configuration MBean has the attributes shown in Table 3–32. The
names of these attributes are defined as static constants in the utility class
DestinationAttributes.

Table 3–32 Destination Configuration Attributes

Name Type Settable? Description

Name String No Destination name

Type String No Destination type

See Table 3–33 for possible values.

MaxNumMsgs Long Yes Maximum number of unconsumed messages

A value of -1 denotes an unlimited number of messages.

MaxBytesPerMsg Long Yes Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the
producing client with an exception; no notice is sent for
nonpersistent messages.

A value of -1 denotes an unlimited message size.

MaxTotalMsgBytes Long Yes Maximum total memory, in bytes, for unconsumed
messages

LimitBehavior String Yes Broker behavior when memory-limit threshold reached

See Table 3–34 for possible values.

If the value is REMOVE_OLDEST or REMOVE_LOW_PRIORITY
and the UseDMQ attribute is true, excess messages are
moved to the dead message queue.

MaxNumProducers Integer Yes Maximum number of associated message producers

When this limit is reached, no new producers can be
created. A value of -1 denotes an unlimited number of
producers.

Destinations

3-18 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

MaxNumActiveConsumers1 Integer Yes Maximum number of associated active message
consumers in load-balanced delivery

A value of -1 denotes an unlimited number of
consumers.

MaxNumBackupConsumers1 Integer Yes Maximum number of associated backup message
consumers in load-balanced delivery

A value of -1 denotes an unlimited number of
consumers.

ConsumerFlowLimit Long Yes Maximum number of messages delivered to consumer in
a single batch

In load-balanced queue delivery, this is the initial number
of queued messages routed to active consumers before
load balancing begins. A destination consumer can
override this limit by specifying a lower value on a
connection.

A value of -1 denotes an unlimited number of
consumers.

LocalOnly Boolean No Local delivery only?

This property applies only to destinations in broker
clusters, and cannot be changed once the destination has
been created. If true, the destination is not replicated on
other brokers and is limited to delivering messages only
to local consumers (those connected to the broker on
which the destination is created).

LocalDeliveryPreferred1 Boolean Yes Local delivery preferred?

This property applies only to load-balanced delivery in
broker clusters. If true, messages will be delivered to
remote consumers only if there are no associated
consumers on the local broker. The destination must not
be restricted to local-only delivery (LocalOnly must be
false).

UseDMQ Boolean Yes Send dead messages to dead message queue?

If false, dead messages will simply be discarded.

ValidateXMLSchemaEnabled Boolean Yes XML schema validation is enabled?

If set to false or not set, then XML schema validation is
not enabled for the destination.

XMLSchemaURIList String Yes Space separated list of XML schema document (XSD) URI
strings

The URIs point to the location of one or more XSDs to use
for XML schema validation, if enabled.

Use double quotes around this value if multiple URIs are
specified.

Example:

"http://foo/flap.xsd http://test.com/test.xsd"

If this property is not set or null and XML validation is
enabled, XML validation is performed using a DTD
specified in the XML document.

ReloadXMLSchemaOnFailure Boolean Yes Reload XML schema on failure enabled?

If set to false or not set, then the schema is not reloaded if
validation fails.

Table 3–32 (Cont.) Destination Configuration Attributes

Name Type Settable? Description

Destinations

Message Queue MBean Reference 3-19

Table 3–33 shows the possible values for the Type attribute. These values are defined
as static constants in the utility class DestinationType.

Table 3–34 shows the possible values for the LimitBehavior attribute. These values are
defined as static constants in the utility class DestinationLimitBehavior.

Operations
The destination configuration MBean supports the operations shown in Table 3–35.
The names of these operations are defined as static constants in the utility class
DestinationOperations.

Table 3–36 shows the possible values for the pause operation's pauseType parameter.
These values are defined as static constants in the utility class DestinationPauseType.

1 Queue destinations only

Table 3–33 Destination Configuration Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–34 Destination Limit Behaviors

Value Utility Constant Meaning

FLOW_CONTROL DestinationLimitBehavior.FLOW_CONTROL Slow down producers

REMOVE_OLDEST DestinationLimitBehavior.REMOVE_OLDEST Throw out oldest messages

REMOVE_LOW_PRIORITY DestinationLimitBehavior.REMOVE_LOW_PRIORITY Throw out lowest-priority
messages according to age; no
notice to producing client

REJECT_NEWEST DestinationLimitBehavior.REJECT_NEWEST Reject newest messages; notify
producing client with an
exception only if message is
persistent

Table 3–35 Destination Configuration Operations

Name Parameters Result Type Description

pause pauseType (String) None Pause message delivery

See Table 3–36 for possible values of pauseType.

pause None None Pause all message delivery

Equivalent to pause(DestinationPauseType.ALL).

resume None None Resume message delivery

purge None None Purge all messages

compact1

1 File-based persistence only

None None Compact persistent data store

Note: Only a paused destination can be compacted.

Destinations

3-20 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Notification
The destination configuration MBean supports the notification shown in Table 3–37.

Destination Monitor
The destination monitor MBean is used for monitoring a destination. There is one such
MBean for each destination.

Object Name
The destination monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,
desttype=destinationType,name=destinationName

where destinationType is one of the destination types shown in Table 3–39 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,desttype=t,
name="Dest"

The utility class MQObjectName provides a static method, createDestinationMonitor,
for constructing object names of this form.

Attributes
The destination monitor MBean has the attributes shown in Table 3–38. The names of
these attributes are defined as static constants in the utility class
DestinationAttributes.

Table 3–36 Destination Pause Types

Value Utility Constant Meaning

PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message
producers

CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message
consumers

ALL DestinationPauseType.ALL Pause all message delivery

Table 3–37 Destination Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Table 3–38 Destination Monitor Attributes

Name Type Settable? Description

Name String No Destination name

Type String No Destination type

See Table 3–39 for possible values.

CreatedByAdmin

Boolean No Administrator-created destination?

Temporary

Boolean No Temporary destination?

Destinations

Message Queue MBean Reference 3-21

ConnectionID1 String No Connection identifier

State Integer No Current state

See Table 3–40 for possible values.

StateLabel String No String representation of current state:

Useful for displaying the state in human-readable
form, such as in the Java Monitoring and
Management Console (jconsole).

See Table 3–40 for possible values.

NumProducers Integer No Current number of associated message producers

NumConsumers Integer No Current number of associated message
consumers

For queue destinations, this attribute includes
both active and backup consumers. For topic
destinations, it includes both nondurable and
(active and inactive) durable subscribers and is
equivalent to NumActiveConsumers.

NumMsgsInDelayDelivery Integer No Current Number of messages in the destination
with a delivery delay waiting for the delivery
time arrival.

NumWildcardProducers Integer No Current number of wildcard message producers
associated with the destination

For topic destinations only.

NumWildcardConsumers Integer No Current number of wildcard message consumers
associated with the destination

For topic destinations only.

NumWildcards Integer No Current number of wildcard message producers
and wildcard message consumers associated with
the destination

For topic destinations only.

PeakNumConsumers Integer No Peak number of associated message consumers
since broker started

For queue destinations, this attribute includes
both active and backup consumers. For topic
destinations, it includes both nondurable and
(active and inactive) durable subscribers and is
equivalent to PeakNumActiveConsumers.

AvgNumConsumers Integer No Average number of associated message
consumers since broker started

For queue destinations, this attribute includes
both active and backup consumers. For topic
destinations, it includes both nondurable and
(active and inactive) durable subscribers and is
equivalent to AvgNumActiveConsumers.

NumActiveConsumers Integer No Current number of associated active message
consumers

For topic destinations, this attribute includes both
nondurable and (active and inactive) durable
subscribers and is equivalent to NumConsumers.

Table 3–38 (Cont.) Destination Monitor Attributes

Name Type Settable? Description

Destinations

3-22 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

PeakNumActiveConsumers Integer No Peak number of associated active message
consumers since broker started

For topic destinations, this attribute includes both
nondurable and (active and inactive) durable
subscribers and is equivalent to
PeakNumConsumers.

AvgNumActiveConsumers Integer No Average number of associated active message
consumers since broker started

For topic destinations, this attribute includes both
nondurable and (active and inactive) durable
subscribers and is equivalent to
AvgNumConsumers.

NumBackupConsumers2 Integer No Current number of associated backup message
consumers

PeakNumBackupConsumers2 Integer No Peak number of associated backup message
consumers since broker started

AvgNumBackupConsumers2 Integer No Average number of associated backup message
consumers since broker started

NumMsgs Long No Current number of messages stored in memory
and persistent store

Does not include messages held in transactions.

NumMsgsRemote Long No Current number of messages stored in memory
and persistent store that were produced to a
remote broker in a cluster. This number does not
include messages included in transactions.

NumMsgsPendingAcks Long No Current number of messages being held in
memory and persistent store pending
acknowledgment

NumMsgsHeldInTransaction Long No Current number of messages being held in
memory and persistent store in uncommitted
transactions

NextMessageID String No JMS Message ID of the next message to be
delivered to any consumer

PeakNumMsgs Long No Peak number of messages stored in memory and
persistent store since broker started

AvgNumMsgs Long No Average number of messages stored in memory
and persistent store since broker started

NumMsgsIn Long No Cumulative number of messages received since
broker started

NumMsgsOut Long No Cumulative number of messages sent since
broker started

MsgBytesIn Long No Cumulative size in bytes of messages received
since broker started

MsgBytesOut Long No Cumulative size in bytes of messages sent since
broker started

PeakMsgBytes Long No Size in bytes of largest single message received
since broker started

Table 3–38 (Cont.) Destination Monitor Attributes

Name Type Settable? Description

Destinations

Message Queue MBean Reference 3-23

Table 3–39 shows the possible values for the Type attribute. These values are defined
as static constants in the utility class DestinationType.

Table 3–40 shows the possible values for the State and StateLabel attributes. These
values are defined as static constants in the utility class DestinationState.

TotalMsgBytes Long No Current total size in bytes of messages stored in
memory and persistent store

Does not include messages held in transactions.

TotalMsgBytesRemote Long No Current total size in bytes of messages stored in
memory and persistent store that were produced
to a remote broker in a cluster. This value does
not include messages included in transactions.

TotalMsgBytesHeldInTransaction Long No Current total size in bytes of messages being held
in memory and persistent store in uncommitted
transactions

PeakTotalMsgBytes Long No Peak total size in bytes of messages stored in
memory and persistent store since broker started

AvgTotalMsgBytes Long No Average total size in bytes of messages stored in
memory and persistent store since broker started

DiskReserved3 Long No Amount of disk space, in bytes, reserved for
destination

DiskUsed3 Long No Amount of disk space, in bytes, currently in use
by destination

DiskUtilizationRatio3 Integer No Ratio of disk space currently in use to disk space
reserved for destination

1 Temporary destinations only
2 Queue destinations only
3 File-based persistence only

Table 3–39 Destination Monitor Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–40 Destination State Values

Value Utility Constant
String
Representation Meaning

0 DestinationState.RUNNING RUNNING Destination running

1 DestinationState.CONSUMERS_PAUSED CONSUMERS_PAUSED Message consumers paused

2 DestinationState.PRODUCERS_PAUSED PRODUCERS_PAUSED Message producers paused

3 DestinationState.PAUSED PAUSED Destination paused

-1 DestinationState.UNKNOWN UNKNOWN Destination state unknown

Table 3–38 (Cont.) Destination Monitor Attributes

Name Type Settable? Description

Destinations

3-24 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The destination monitor MBean supports the operations shown in Table 3–41. The
names of these operations are defined as static constants in the utility class
DestinationOperations.

Notifications
The destination monitor MBean supports the notifications shown in Table 3–42. These
notifications are instances of the Message Queue JMX class DestinationNotification,
and their names are defined as static constants in that class.

Table 3–41 Destination Monitor Operations

Name Parameters Result Type Description

getConnection1

1 Temporary destinations only

None ObjectName Object name of connection monitor MBean
for connection

getProducerIDs None String[] Producer identifiers of all current associated
message producers

getConsumerIDs None String[] Consumer identifiers of all current
associated message consumers

For queue destinations, this operation
returns both active and backup consumers.
For topic destinations, it returns both
nondurable and (active and inactive)
durable subscribers.

 getActiveConsumerIDs None String[] Consumer identifiers of all current
associated active message consumers

For topic destinations, this operation returns
both nondurable and (active and inactive)
durable subscribers.

 getBackupConsumerIDs2

2 Queue destinations only

None String[] Consumer identifiers of all current
associated backup message consumers

getConsumerWildcards none String[] Wildcard strings used by current consumers
associated with the destination

For topic destinations only.

getProducerWildcards none String[] Wildcard strings used by current producers
associated with the destination

For topic destinations only.

getWildcards none String[] Wildcard strings used by current consumers
and producers associated with the
destination

For topic destinations only.

getNumWildcardConsumers wildcard-String Integer Number of current consumers associated
with the destination that are using the
specified wildcard string

For topic destinations only.

getNumWildcardProducers wildcard-String Integer Number of current producers associated
with the destination that are using the
specified wildcard string

For topic destinations only.

Destinations

Message Queue MBean Reference 3-25

Table 3–43 shows the methods defined in class DestinationNotification for
obtaining details about a destination monitor notification.

Destination Manager Configuration
Each broker has a single destination manager configuration MBean, used for
managing all of the broker's destination configuration MBeans.

Object Name
The destination manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=DestinationManager,subtype=Config

A string representing this object name is defined as a static constant DESTINATION_
MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The destination manager configuration MBean has the attributes shown in Table 3–44.
The names of these attributes are defined as static constants in the utility class
DestinationAttributes.

Table 3–42 Destination Monitor Notifications

Name Utility Constant Description

mq.destination.pause DestinationNotification.DESTINATION_PAUSE Destination paused

mq.destination.resume DestinationNotification.DESTINATION_RESUME Destination resumed

mq.destination.compact DestinationNotification.DESTINATION_COMPACT Destination compacted

mq.destination.purge DestinationNotification.DESTINATION_PURGE Destination purged

Table 3–43 Data Retrieval Methods for Destination Monitor Notifications

Method Result Type Description

getDestinationName String Destination name

getDestinationType String Destination type

See Table 3–39 for possible values.

getCreatedByAdmin Boolean Administrator-created destination?

getPauseType String Pause type

See Table 3–36 for possible values.

Table 3–44 Destination Manager Configuration Attributes

Name Type Settable? Description

AutoCreateQueues Boolean Yes Allow auto-creation of queue
destinations?

AutoCreateTopics Boolean Yes Allow auto-creation of topic
destinations?

NumDestinations Integer No Current total number of destinations

MaxNumMsgs Long Yes Maximum total number of unconsumed
messages

A value of -1 denotes an unlimited
number of messages.

Destinations

3-26 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The destination manager configuration MBean supports the operations shown in
Table 3–45. The names of these operations are defined as static constants in the utility
class DestinationOperations.

MaxBytesPerMsg Long Yes Maximum size, in bytes, of any single
message

A value of -1 denotes an unlimited
message size.

MaxTotalMsgBytes Long Yes Maximum total memory, in bytes, for
unconsumed messages

A value of -1 denotes an unlimited
number of bytes.

AutoCreateQueueMaxNumActiveConsumers1 Integer Yes Maximum total number of active
message consumers in load-balanced
delivery

A value of -1 denotes an unlimited
number of consumers.

AutoCreateQueueMaxNumBackupConsumers1 Integer Yes Maximum total number of backup
message consumers in load-balanced
delivery

A value of -1 denotes an unlimited
number of consumers.

DMQTruncateBody Boolean Yes Remove message body before storing in
dead message queue?

If true, only the message header and
property data will be saved.

LogDeadMsgs Boolean Yes Log information about dead messages?

If true, the following events will be
logged:

■ A destination is full, having reached
its maximum size or message count.

■ The broker discards a message for a
reason other than an administrative
command or delivery
acknowledgment.

■ The broker moves a message to the
dead message queue.

1 Auto-created queue destinations only

Table 3–44 (Cont.) Destination Manager Configuration Attributes

Name Type Settable? Description

Destinations

Message Queue MBean Reference 3-27

Table 3–46 shows the possible values for the create and destroy operations'
destinationType parameters. These values are defined as static constants in the utility
class DestinationType.

Table 3–47 shows the possible values for the pause operation's pauseType parameter.
These values are defined as static constants in the utility class DestinationPauseType.

Table 3–45 Destination Manager Configuration Operations

Name Parameters Result Type Description

 getDestinations None ObjectName[] Object names of destination configuration MBeans
for all current destinations

 create destinationType
(String)

destinationName
(String)

destinationAttributes
(AttributeList)

None Create destination with specified type, name, and
attributes

The destinationType and destinationName
parameters are required, but destinationAttributes
may be null.

See Table 3–46 for possible values of
destinationType.

The destinationAttributes list may include any of
the attributes listed in Table 3–32 except Name and
Type. The names of these attributes are defined as
static constants in the utility class
DestinationAttributes.

 create destinationType
(String)

destinationName
(String)

None Create destination with specified type and name

Equivalent to create(destinationType,
destinationName, null).

See Table 3–46 for possible values of
destinationType.

 destroy destinationType
(String)

destinationName
(String)

None Destroy destination

See Table 3–46 for possible values of
destinationType.

 pause pauseType (String) None Pause message delivery for all destinations

See Table 3–47 for possible values of pauseType.

 pause None None Pause all message delivery for all destinations

Equivalent to
pause(DestinationPauseType.ALL).

 resume None None Resume message delivery for all destinations

 compact1

1 File-based persistence only

None None Compact all destinations

Note: Only paused destinations can be
compacted.

Table 3–46 Destination Manager Configuration Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Destinations

3-28 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Notification
The destination manager configuration MBean supports the notification shown in
Table 3–48.

Destination Manager Monitor
Each broker has a single destination manager monitor MBean, used for managing all
of the broker's destination monitor MBeans.

Object Name
The destination manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=DestinationManager,subtype=Monitor

A string representing this object name is defined as a static constant DESTINATION_
MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The destination manager monitor MBean has the attributes shown in Table 3–49. The
names of these attributes are defined as static constants in the utility class
DestinationAttributes.

Table 3–47 Destination Manager Pause Types

Value Utility Constant Meaning

PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message
producers

CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message
consumers

ALL DestinationPauseType.ALL Pause all delivery

Table 3–48 Destination Manager Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Table 3–49 Destination Manager Monitor Attributes

Name Type Settable? Description

NumDestinations Integer No Current total number of destinations

NumMsgs Long No Current total number of messages stored in memory and
persistent store for all destinations

Does not include messages held in transactions.

TotalMsgBytes Long No Current total size in bytes of messages stored in memory and
persistent store for all destinations

Does not include messages held in transactions.

NumMsgsInDMQ Long No Current number of messages stored in memory and persistent
store for dead message queue

TotalMsgBytesInDMQ Long No Current total size in bytes of messages stored in memory and
persistent store for dead message queue

Message Producers

Message Queue MBean Reference 3-29

Operation
The destination manager monitor MBean supports the operation shown in Table 3–50.
The name of this operation is defined as a static constant in the utility class
DestinationOperations.

Notifications
The destination manager monitor MBean supports the notifications shown in
Table 3–51. These notifications are instances of the Message Queue JMX class
DestinationNotification, and their names are defined as static constants in that
class.

Table 3–52 shows the methods defined in class DestinationNotification for
obtaining details about a destination manager monitor notification.

Message Producers
This section describes the MBeans used for managing message producers:

■ The producer manager configuration MBean configures message producers.

■ The producer manager monitor MBean monitors message producers.

The following subsections describe each of these MBeans in detail.

Table 3–50 Destination Manager Monitor Operation

Name Parameters Result Type Description

getDestinations None ObjectName[] Object names of destination monitor MBeans
for all current destinations

Table 3–51 Destination Manager Monitor Notifications

Name Utility Constant Description

mq.destination.create DestinationNotification.DESTINATION_CREATE Destination created

mq.destination.destroy DestinationNotification.DESTINATION_DESTROY Destination
destroyed

mq.destination.pause DestinationNotification.DESTINATION_PAUSE Destination paused

mq.destination.resume DestinationNotification.DESTINATION_RESUME Destination resumed

mq.destination.compact DestinationNotification.DESTINATION_COMPACT Destination
compacted

mq.destination.purge DestinationNotification.DESTINATION_PURGE Destination purged

Table 3–52 Data Retrieval Methods for Destination Manager Monitor Notifications

Method Result Type Description

getDestinationName String Destination name

getDestinationType String Destination type

See Table 3–46 for possible values.

getCreatedByAdmin Boolean Administrator-created destination?

getPauseType String Pause type

See Table 3–47 for possible values.

Message Producers

3-30 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Producer Manager Configuration
Each broker has a single producer manager configuration MBean, used for configuring
all of the broker's message producers.

Object Name
The producer manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ProducerManager,subtype=Config

A string representing this object name is defined as a static constant PRODUCER_
MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The producer manager configuration MBean has the attribute shown in Table 3–53.
The name of this attribute is defined as a static constant in the utility class
ProducerAttributes.

Operation
The producer manager configuration MBean supports the operation shown in
Table 3–54. The name of this operation is defined as a static constant in the utility class
ProducerOperations.

Producer Manager Monitor
Each broker has a single producer manager monitor MBean, used for monitoring all of
the broker's message producers.

Object Name
The producer manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ProducerManager,subtype=Monitor

A string representing this object name is defined as a static constant PRODUCER_
MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Note: Notice that there are no resource MBeans associated with
individual message producers; rather, all producers are managed
through the broker's global producer manager configuration and
producer manager monitor MBeans.

Table 3–53 Producer Manager Configuration Attribute

Name Type Settable? Description

NumProducers Integer No Current total number of message producers

Table 3–54 Producer Manager Configuration Operation

Name Parameters Result Type Description

 getProducerIDs None String[] Producer identifiers of all current message producers

Message Producers

Message Queue MBean Reference 3-31

Attribute
The producer manager monitor MBean has the attribute shown in Table 3–55. The
name of this attribute is defined as a static constant in the utility class
ProducerAttributes.

Operations
The producer manager monitor MBean supports the operations shown in Table 3–56.
The names of these operations are defined as static constants in the utility class
ProducerOperations.

The getProducerInfoByID and getProducerInfo operations return objects
implementing the JMX interface CompositeData, which maps lookup keys to
associated data values. The keys shown in Table 3–57 are defined as static constants in
the utility class ProducerInfo for use with these objects.

Table 3–55 Producer Manager Monitor Attribute

Name Type Settable? Description

NumProducers Integer No Current total number of message producers

NumWildcardProducers Integer No Number of wildcard message producers associated with the
broker

Table 3–56 Producer Manager Monitor Operations

Name Parameters Result Type Description

getProducerIDs None String[] Producer identifiers of all current message
producers

getProducerInfoByID producerID
(String)

CompositeData Descriptive information about message
producer

The desired producer is designated by its
producer identifier (producerID). The
value returned is a JMX CompositeData
object describing the producer; see
Table 3–57 for lookup keys used with this
object.

getProducerInfo None CompositeData[] Descriptive information about all current
message producers

The value returned is an array of JMX
CompositeData objects describing the
producers; see Table 3–57 for lookup keys
used with these objects.

getProducerWildcards None String[] Wildcard strings used by current
producers associated with the broker

getNumWildcardProducers wildcard-String Integer Number of current producers associated
with the broker that are using the
specified wildcard string

Message Consumers

3-32 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table 3–58 shows the possible values returned for the lookup key DestinationType.
These values are defined as static constants in the utility class DestinationType.

Message Consumers
This section describes the MBeans used for managing message consumers:

■ The consumer manager configuration MBean configures message consumers.

■ The consumer manager monitor MBean monitors message consumers.

The following subsections describe each of these MBeans in detail.

Consumer Manager Configuration
Each broker has a single consumer manager configuration MBean, used for
configuring all of the broker's message consumers.

Table 3–57 Lookup Keys for Message Producer Information

Name Value Type Description

ProducerID String Producer identifier

ServiceName String Name of associated connection service

ConnectionID

String Connection identifier of associated connection

Host String Connection's host name

User String Connection's user name

DestinationName String Name of associated destination

DestinationNames String[] Destination names that match wildcards used by wildcard producers

For topic destinations only.

Wildcard Boolean Wildcard producer?

For topic destinations only.

DestinationType String Type of associated destination

See Table 3–58 for possible values.

FlowPaused Boolean Message delivery paused?

NumMsgs Long Number of messages sent

Table 3–58 Message Producer Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Note: Notice that there are no resource MBeans associated with
individual message consumers; rather, all consumers are managed
through the broker's global consumer manager configuration and
consumer manager monitor MBeans.

Message Consumers

Message Queue MBean Reference 3-33

Object Name
The consumer manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ConsumerManager,subtype=Config

A string representing this object name is defined as a static constant CONSUMER_
MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The consumer manager configuration MBean has the attribute shown in Table 3–59.
The name of this attribute is defined as a static constant in the utility class
ConsumerAttributes.

Operations
The consumer manager configuration MBean supports the operations shown in
Table 3–60. The names of these operations are defined as static constants in the utility
class ConsumerOperations.

Consumer Manager Monitor
Each broker has a single consumer manager monitor MBean, used for monitoring all
of the broker's message consumers.

Object Name
The consumer manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ConsumerManager,subtype=Monitor

A string representing this object name is defined as a static constant CONSUMER_
MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attribute
The consumer manager monitor MBean has the attribute shown in Table 3–61. The
name of this attribute is defined as a static constant in the utility class
ConsumerAttributes.

Table 3–59 Consumer Manager Configuration Attribute

Name Type Settable? Description

NumConsumers Integer No Current total number of message consumers

Table 3–60 Consumer Manager Configuration Operations

Name Parameters Result Type Description

 getConsumerIDs None String[] Consumer identifiers of all current message consumers

 purge1

1 Durable topic subscribers only

consumerID
(String)

None Purge all messages

The desired subscriber is designated by its consumer identifier
(consumerID).

The subscriber itself is not destroyed.

Message Consumers

3-34 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The consumer manager monitor MBean supports the operations shown in Table 3–62.
The names of these operations are defined as static constants in the utility class
ConsumerOperations.

The getConsumerInfoByID and getConsumerInfo operations return objects
implementing the JMX interface CompositeData, which maps lookup keys to
associated data values. The keys shown in Table 3–63 are defined as static constants in
the utility class ConsumerInfo for use with these objects.

Table 3–61 Consumer Manager Monitor Attribute

Name Type Settable? Description

NumConsumers Integer No Current total number of message consumers

NumWildcardConsumers Integer No Number of wildcard message consumers associated with the
broker

Table 3–62 Consumer Manager Monitor Operations

Name Parameters Result Type Description

getConsumerIDs None String[] Consumer identifiers of all current
message consumers

getConsumerInfoByID consumerID
(String)

CompositeData Descriptive information about message
consumer

The desired consumer is designated by
its consumer identifier (consumerID).
The value returned is a JMX
CompositeData object describing the
consumer; see Table 3–63 for lookup
keys used with this object.

getConsumerInfo None CompositeData[] Descriptive information about all current
message consumers

The value returned is an array of JMX
CompositeData objects describing the
consumers; see Table 3–63 for lookup
keys used with these objects.

 getConsumerWildcards none String[] Wildcard strings used by current
consumers associated with the broker

 getNumWildcardConsumers wildcard-String Integer Number of current consumers associated
with the broker that are using the
specified wildcard string

Table 3–63 Lookup Keys for Message Consumer Information

Name Value Type Description

ConsumerID String Consumer identifier

Selector String Message selector

ServiceName String Name of associated connection service

ConnectionID String Connection identifier of associated connection

Host String Connection's host name

User String Connection's user name

DestinationName String Name of associated destination

Message Consumers

Message Queue MBean Reference 3-35

Table 3–64 shows the possible values returned for the lookup key DestinationType.
These values are defined as static constants in the utility class DestinationType.

Table 3–65 shows the possible values returned for the lookup keys AcknowledgeMode
and AcknowledgeModeLabel. Four of these values are defined as static constants in the
standard JMS interface javax.jms.Session; the fifth (NO_ACKNOWLEDGE) is defined in

DestinationNames String[] Destination names that match wildcards used by wildcard consumers

For topic destinations only.

Wildcard Boolean Wildcard consumer?

For topic destinations only.

DestinationType String Type of associated destination

See Table 3–64 for possible values.

AcknowledgeMode Integer Acknowledgment mode of associated session

See Table 3–65 for possible values.

AcknowledgeModeLabel String String representation of acknowledgment mode

Useful for displaying the acknowledgment mode in human-readable
form, such as in the Java Monitoring and Management Console
(jconsole).

See Table 3–65 for possible values.

Durable Boolean Durable topic subscriber?

DurableName1 String Subscription name

ClientID1 String Client identifier

DurableActive1 Boolean Subscriber active?

FlowPaused Boolean Message delivery paused?

NumMsgs Long Cumulative number of messages that have been dispatched to consumer
(includes messages that have been delivered and those waiting to be
delivered)

NumMsgsPending Long Current number of messages that have been dispatched to consumer
and are being held in broker memory and persistent store (includes
messages that have been delivered and those waiting to be delivered)

NumMsgsPendingAcks Long Current number of messages that have been delivered to consumer and
are being held in broker memory and persistent store pending
acknowledgment

NextMessageID Long JMS Message ID of the next message to be delivered to consumer

LastAckTime Long Time of last acknowledgment, in standard Java format (milliseconds
since January 1, 1970, 00:00:00 UTC)

1 Durable topic subscribers only

Table 3–64 Message Consumer Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–63 (Cont.) Lookup Keys for Message Consumer Information

Name Value Type Description

Transactions

3-36 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

the extended Message Queue version of the interface,
com.sun.messaging.jms.Session.

Transactions
This section describes the MBeans used for managing transactions:

■ The transaction manager configuration MBean configures transactions.

■ The transaction manager monitor MBean monitors transactions.

The following subsections describe each of these MBeans in detail.

Transaction Manager Configuration
Each broker has a single transaction manager configuration MBean, used for
configuring all of the broker's transactions.

Object Name
The transaction manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=TransactionManager,subtype=Config

A string representing this object name is defined as a static constant TRANSACTION_
MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The transaction manager configuration MBean has the attribute shown in Table 3–66.
The name of this attribute is defined as a static constant in the utility class
TransactionAttributes.

Table 3–65 Acknowledgment Modes

Value Utility Constant String Representation Meaning

1 javax.jms.Session.AUTO_ACKNOWLEDGE AUTO_ACKNOWLEDGE Auto-acknowledge mode

2 javax.jms.Session.CLIENT_ACKNOWLEDGE CLIENT_ACKNOWLEDGE Client-acknowledge mode

3 javax.jms.Session.DUPS_OK_ACKNOWLEDGE DUPS_OK_ACKNOWLEDGE Dups-OK-acknowledge
mode

32768 com.sun.messaging.jms.Session.NO_
ACKNOWLEDGE

NO_ACKNOWLEDGE No-acknowledge mode

0 javax.jms.Session.SESSION_TRANSACTED SESSION_TRANSACTED Session is transacted
(acknowledgment mode
ignored)

Note: Notice that there are no resource MBeans associated with
individual transactions; rather, all transactions are managed
through the broker's global transaction manager configuration and
transaction manager monitor MBeans.

Table 3–66 Transaction Manager Configuration Attribute

Name Type Settable? Description

NumTransactions Integer No Current number of open transactions

Transactions

Message Queue MBean Reference 3-37

Operations
The transaction manager configuration MBean supports the operations shown in
Table 3–67. The names of these operations are defined as static constants in the utility
class TransactionOperations.

Transaction Manager Monitor
Each broker has a single transaction manager monitor MBean, used for monitoring all
of the broker's transactions.

Object Name
The transaction manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=TransactionManager,subtype=Monitor

A string representing this object name is defined as a static constant TRANSACTION_
MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The transaction manager monitor MBean has the attributes shown in Table 3–68. The
names of these attributes are defined as static constants in the utility class
TransactionAttributes.

Operations
The transaction manager monitor MBean supports the operations shown in
Table 3–69. The names of these operations are defined as static constants in the utility
class TransactionOperations.

Table 3–67 Transaction Manager Configuration Operations

Name Parameters Result Type Description

 getTransactionIDs None String[] Transaction identifiers of all current open transactions

 commit transactionID
(String)

None Commit transaction

The desired transaction is designated by its transaction
identifier (transactionID).

 rollback transactionID
(String)

None Roll back transaction

The desired transaction is designated by its transaction
identifier (transactionID).

Table 3–68 Transaction Manager Monitor Attributes

Name Type Settable? Description

NumTransactions Integer No Current number of open transactions

NumTransactionsCommitted Long No Cumulative number of transactions committed since
broker started

NumTransactionsRollback Long No Cumulative number of transactions rolled back since
broker started

Transactions

3-38 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

The getTransactionInfoByID and getTransactionInfo operations return objects
implementing the JMX interface CompositeData, which maps lookup keys to
associated data values. The keys shown in Table 3–70 are defined as static constants in
the utility class TransactionInfo for use with these objects.

Table 3–71 shows the possible values returned for the lookup keys State and
StateLabel. These values are defined as static constants in the utility class
TransactionState.

Table 3–69 Transaction Manager Monitor Operations

Name Parameters Result Type Description

getTransactionIDs None String[] Transaction identifiers of all current open
transactions

 getTransactionInfoByID transactionID
(String)

CompositeData Descriptive information about transaction

The desired transaction is designated by its
transaction identifier (transactionID). The
value returned is a JMX CompositeData
object describing the transaction; see
Table 3–70 for lookup keys used with this
object.

getTransactionInfo None CompositeData[] Descriptive information about all current
open transactions

The value returned is an array of JMX
CompositeData objects describing the
transactions; see Table 3–70 for lookup keys
used with these objects.

Table 3–70 Lookup Keys for Transaction Information

Name Value Type Description

TransactionID String Transaction identifier

XID1

1 Distributed transactions only

String Distributed transaction identifier (XID)

User String User name

ClientID String Client identifier

ConnectionString String Connection string

CreationTime Long Time created, in standard Java format (milliseconds since January 1, 1970,
00:00:00 UTC)

State Integer Current state

See Table 3–71 for possible values.

StateLabel String String representation of current state

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3–71 for possible values.

NumMsgs Long Number of messages

NumAcks Long Number of acknowledgments

Broker Clusters

Message Queue MBean Reference 3-39

Notifications
The transaction manager monitor MBean supports the notifications shown in
Table 3–72. These notifications are instances of the Message Queue JMX class
TransactionNotification, and their names are defined as static constants in that
class.

Table 3–73 shows the method defined in class TransactionNotification for obtaining
details about a transaction manager monitor notification.

Broker Clusters
This section describes the MBeans used for managing broker clusters:

■ The cluster configuration MBean configures a broker's cluster-related properties.

■ The cluster monitor MBean monitors the brokers in a cluster.

The following subsections describe each of these MBeans in detail.

Table 3–71 Transaction State Values

Value Utility Constant String Representation Meaning

0 TransactionState.CREATED CREATED Transaction created

1 TransactionState.STARTED STARTED Transaction started

2

TransactionState.FAILED

FAILED Transaction has failed

3 TransactionState.INCOMPLETE INCOMPLETE Transaction incomplete

4 TransactionState.COMPLETE COMPLETE Transaction complete

5 TransactionState.PREPARED PREPARED Transaction in prepared state1

1 Distributed transactions only

6 TransactionState.COMMITTED COMMITTED Transaction committed

7 TransactionState.ROLLEDBACK ROLLEDBACK Transaction rolled back

8 TransactionState.TIMED_OUT TIMED_OUT Transaction has timed out

-1 TransactionState.UNKNOWN UNKNOWN Transaction state unknown

Table 3–72 Transaction Manager Monitor Notifications

Name Utility Constant Description

mq.transaction.prepare1

1 Distributed transactions only

TransactionNotification.TRANSACTION_PREPARE Transaction has
entered prepared
state

mq.transaction.commit TransactionNotification.TRANSACTION_COMMIT Transaction
committed

mq.transaction.rollback TransactionNotification.TRANSACTION_ROLLBACK Transaction rolled
back

Table 3–73 Data Retrieval Method for Transaction Manager Monitor Notifications

Method Result Type Description

getTransactionID String Transaction identifier

Broker Clusters

3-40 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Cluster Configuration
The cluster configuration MBean is used for configuring a broker's cluster-related
properties. There is one such MBean for each broker.

Object Name
The cluster configuration MBean has the following object name:

com.sun.messaging.jms.server:type=Cluster,subtype=Config

A string representing this object name is defined as a static constant CLUSTER_CONFIG_
MBEAN_NAME in the utility class MQObjectName.

Attributes
The cluster configuration MBean has the attributes shown in Table 3–74. The names of
these attributes are defined as static constants in the utility class ClusterAttributes.

Table 3–74 Cluster Configuration Attributes

Name Type Settable? Description

HighlyAvailable Boolean No High-availability (HA) cluster?

ClusterID1

1 HA clusters only

String No Cluster identifier

Must be a unique alphanumeric
string of no more than n - 13
characters, where n is the maximum
table name length allowed by the
database. No two running clusters
may have the same cluster identifier.

This string is appended to the names
of all database tables in the cluster's
shared persistent store.

Note: For brokers belonging to an
HA cluster, this attribute is used in
database table names in place of
BrokerID (see Table 3–1).

ConfigFileURL2

2 Conventional clusters only

String Yes URL of cluster configuration file

LocalBrokerInfo CompositeData No Descriptive information about local
broker

The value returned is a JMX
CompositeData object describing the
broker; see Table 3–76 for lookup
keys used with this object.

MasterBrokerInfo2 CompositeData No Descriptive information about master
broker

The value returned is a JMX
CompositeData object describing the
master broker; see Table 3–76 for
lookup keys used with this object.

UseSharedDatabaseForConfigRecord2 Boolean No Does conventional cluster use a
shared JDBC data store instead of a
master broker for the cluster
configuration change record?

Broker Clusters

Message Queue MBean Reference 3-41

Operations
The cluster configuration MBean supports the operations shown in Table 3–75. The
names of these operations are defined as static constants in the utility class
ClusterOperations.

Table 3–75 Cluster Configuration Operations

Name Parameters Result Type Description

getBrokerAddresses None String[] Addresses of brokers in cluster

Each address specifies the host name
and Port Mapper port number of a
broker in the cluster, in the form
hostName:portNumber.

Example:

host1:3000

For conventional clusters, the list
includes all brokers specified by the
broker property
imq.cluster.brokerlist. For HA
clusters, it includes all active and
inactive brokers in the cluster table
stored in the HA database.

getBrokerIDs1 None String[] Broker identifiers of brokers in cluster

The list includes all active and inactive
brokers in the cluster table stored in the
HA database.

 getBrokerInfoByAddress brokerAddress
(String)

CompositeData Descriptive information about broker

The desired broker is designated by its
host name and Port Mapper port
number (brokerAddress), in the form
hostName:portNumber. The value
returned is a JMX CompositeData object
describing the broker; see Table 3–76
for lookup keys used with this object.

getBrokerInfoByID1 brokerID (String) CompositeData Descriptive information about broker

The desired broker is designated by its
broker identifier (brokerID). The value
returned is a JMX CompositeData object
describing the broker; see Table 3–76
for lookup keys used with this object.
For conventional clusters, the operation
returns null.

Broker Clusters

3-42 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

The LocalBrokerInfo and MasterBrokerInfo attributes and the
getBrokerInfoByAddress, getBrokerInfoByID, and getBrokerInfo operations return
objects implementing the JMX interface CompositeData, which maps lookup keys to
associated data values. The keys shown in Table 3–76 are defined as static constants in
the utility class BrokerClusterInfo for use with these objects.

getBrokerInfo None CompositeData[] Descriptive information about all
brokers in cluster

The value returned is an array of JMX
CompositeData objects describing the
brokers; see Table 3–76 for lookup keys
used with these objects.

For conventional clusters, the array
includes all brokers specified by the
broker property
imq.cluster.brokerlist. For HA
clusters, it includes all active and
inactive brokers in the cluster table
stored in the HA database.

reload2 None None Reload cluster configuration file

changeMasterBroker2 oldMasterBroker
(String),
newMasterBroker
(String)

CompositeData Specify a change of master broker from
oldMasterBroker to newMasterBroker,
where both arguments are in
imq.cluster.masterbroker format
(host:port).

The value returned is a JMX
CompositeData object containing
information about the success or failure
of the operation; see Table 3–77 for
lookup keys used with this object.

This operation can only be performed
on the broker that is the current master
broker. If it is performed on any other
broker it will have no effect and the
CompositeData object returned will
contain details of the error.

This operation must not be performed
on a broker whose lifecycle is being
managed by GlassFish Server. In this
case GlassFish Server tools must be
used instead.

1 HA clusters only
2 Conventional clusters only

Table 3–76 Lookup Keys for Cluster Configuration Information

Key Value Type Description

Address String Broker address, in the form hostName:portNumber

Example:

host1:3000

ID1

1 HA clusters only

String Broker identifier

Table 3–75 (Cont.) Cluster Configuration Operations

Name Parameters Result Type Description

Broker Clusters

Message Queue MBean Reference 3-43

The changeMasterBroker operation returns an object implementing the JMX interface
CompositeData, which maps lookup keys to associated data values. The keys shown in
Table 3–77 are defined as static constants in the utility class
ChangeMasterBrokerResultInfo for use with this object.

Notification
The cluster configuration MBean supports the notification shown in Table 3–78.

Cluster Monitor
The cluster monitor MBean is used for monitoring the brokers in a cluster. There is one
such MBean for each broker.

Object Name
The cluster monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Cluster,subtype=Monitor

A string representing this object name is defined as a static constant CLUSTER_MONITOR_
MBEAN_NAME in the utility class MQObjectName.

Attributes
The cluster monitor MBean has the attributes shown in Table 3–79. The names of these
attributes are defined as static constants in the utility class ClusterAttributes.

Table 3–77 Lookup Keys for changeMasterBroker

Key Value Type Description

Success Boolean Whether an error occurred when performing the changeMasterBroker operation.
If an error occurred, the StatusCode and DetailMessage keys contain more
information.

StatusCode Integer A status code set when an error occurred. The DetailMessage key contains more
information.

DetailMessage String An error message set when an error occurs. The possible errors, and the actions
that should be taken to resolve them, are the same as for the imqcmd
changemaster command, as described in "To Change the Master Broker
Dynamically While the Cluster Is Running" in Open Message Queue Administration
Guide.

Table 3–78 Cluster Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Broker Clusters

3-44 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Operations
The cluster monitor MBean supports the operations shown in Table 3–80. The names
of these operations are defined as static constants in the utility class
ClusterOperations.

Table 3–79 Cluster Monitor Attributes

Name Type Settable? Description

HighlyAvailable Boolean No High-availability (HA) cluster?

ClusterID1

1 HA clusters only

String No Cluster identifier

Must be a unique alphanumeric
string of no more than n - 13
characters, where n is the maximum
table name length allowed by the
database. No two running clusters
may have the same cluster identifier.

This string is appended to the names
of all database tables in the cluster's
shared persistent store.

Note: For brokers belonging to an
HA cluster, this attribute is used in
database table names in place of
BrokerID (see Table 3–4).

ConfigFileURL2

2 Conventional clusters only

String Yes URL of cluster configuration file

LocalBrokerInfo CompositeData No Descriptive information about local
broker

The value returned is a JMX
CompositeData object describing the
broker; see Table 3–81 for lookup
keys used with this object.

MasterBrokerInfo2 CompositeData No Descriptive information about master
broker

The value returned is a JMX
CompositeData object describing the
master broker; see Table 3–81 for
lookup keys used with this object.

UseSharedDatabaseForConfigRecord2 Boolean No Does conventional cluster use a
shared JDBC data store instead of a
master broker for the cluster
configuration change record?

Broker Clusters

Message Queue MBean Reference 3-45

The LocalBrokerInfo and MasterBrokerInfo attributes and the
getBrokerInfoByAddress, getBrokerInfoByID, and getBrokerInfo operations return
objects implementing the JMX interface CompositeData, which maps lookup keys to
associated data values. The keys shown in Table 3–81 are defined as static constants in
the utility class BrokerClusterInfo for use with these objects.

Table 3–80 Cluster Monitor Operations

Name Parameters Result Type Description

getBrokerAddresses None String[] Addresses of brokers in cluster

Each address specifies the host name and
Port Mapper port number of a broker in the
cluster, in the form hostName:portNumber.

Example:

host1:3000

For conventional clusters, the list includes
all brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters,
it includes all active and inactive brokers in
the cluster table stored in the HA database.

getBrokerIDs1

1 HA clusters only

None String[] Broker identifiers of brokers in cluster

The list includes all active and inactive
brokers in the cluster table stored in the HA
database.

getBrokerInfoByAddress brokerAddress
(String)

CompositeData Descriptive information about broker

The desired broker is designated by its host
name and Port Mapper port number
(brokerAddress), in the form
hostName:portNumber. The value returned is
a JMX CompositeData object describing the
broker; seeTable 3–81 for lookup keys used
with this object.

getBrokerInfoByID1 brokerID
(String)

CompositeData Descriptive information about broker

The desired broker is designated by its
broker identifier (brokerID). The value
returned is a JMX CompositeData object
describing the broker; seeTable 3–81 for
lookup keys used with this object. For
conventional clusters, the operation returns
null.

getBrokerInfo None CompositeData[] Descriptive information about all brokers in
cluster

The value returned is an array of JMX
CompositeData objects describing the
brokers; see Table 3–81 for lookup keys used
with these objects.

For conventional clusters, the array includes
all brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters,
it includes all active and inactive brokers in
the cluster table stored in the HA database.

Broker Clusters

3-46 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table 3–82 shows the possible values returned for the lookup keys State and
StateLabel. These values are defined as static constants in the utility class
BrokerState.

Notifications
The cluster monitor MBean supports the notifications shown in Table 3–83. These
notifications are instances of the Message Queue JMX classes ClusterNotification

Table 3–81 Lookup Keys for Cluster Monitor Information

Key Value Type Description

Address String Broker address, in the form hostName:portNumber

Example:

host1:3000

ID1

1 HA clusters only

String Broker identifier

State Integer Current state of broker

See Table 3–82 for possible values.

StateLabel String String representation of current broker state

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3–82 for possible values.

TakeoverBrokerID1 String Broker identifier of broker that has taken over this broker's persistent data
store

NumMsgs1 Long Current number of messages stored in memory and persistent store

StatusTimestamp1 Long Time of last status update, in standard Java format (milliseconds since
January 1, 1970, 00:00:00 UTC)

Used to determine whether a broker is running.

The interval at which a broker updates its status can be configured with the
broker property imq.cluster.monitor.interval.

Table 3–82 Broker State Values

Value Utility Constant
String
Representation Meaning

0 BrokerState.OPERATING OPERATING Broker is operating

1 BrokerState.TAKEOVER_STARTED TAKEOVER_STARTED Broker has begun taking over persistent
data store from another broker

2 BrokerState.TAKEOVER_COMPLETE TAKEOVER_COMPLETE Broker has finished taking over persistent
data store from another broker

3 BrokerState.TAKEOVER_FAILED TAKEOVER_FAILED Attempted takeover has failed

4 BrokerState.QUIESCE_STARTED QUIESCE_STARTED Broker has begun quiescing

5 BrokerState.QUIESCE_COMPLETE QUIESCE_COMPLETE Broker has finished quiescing

6 BrokerState.SHUTDOWN_STARTED SHUTDOWN_STARTED Broker has begun shutting down

7 BrokerState.BROKER_DOWN BROKER_DOWN Broker is down

-1 BrokerState.UNKNOWN UNKNOWN Broker state unknown

Logging

Message Queue MBean Reference 3-47

and BrokerNotification, and their names are defined as static constants in those
classes.

Table 3–84 shows the methods defined in class ClusterNotification for obtaining
details about a cluster monitor notification. See Table 3–6 for the corresponding
methods of class BrokerNotification.

Logging
This section describes the MBeans used for logging Message Queue operations:

■ The log configuration MBean configures Message Queue logging.

■ The log monitor MBean monitors Message Queue logging.

The following subsections describe each of these MBeans in detail.

Log Configuration
Each broker has a single log configuration MBean, used for configuring Message
Queue logging.

Object Name
The log configuration MBean has the following object name:

Table 3–83 Cluster Monitor Notifications

Name Utility Constant Description

mq.cluster.broker.join ClusterNotification.CLUSTER_
BROKER_JOIN

A broker has joined the cluster

mq.cluster.broker.down ClusterNotification.CLUSTER_
BROKER_DOWN

A broker in the cluster has shut
down or crashed

mq.broker.takeover.start1

1 HA clusters only

BrokerNotification.BROKER_
TAKEOVER_START

A broker has begun taking over
persistent data store from another
broker

mq.broker.takeover.complete1 BrokerNotification.BROKER_
TAKEOVER_COMPLETE

A broker has finished taking over
persistent data store from another
broker

mq.broker.takeover.fail1 BrokerNotification.BROKER_
TAKEOVER_FAIL

An attempted takeover has failed

Table 3–84 Data Retrieval Methods for Cluster Monitor Notifications

Method Result Type Description

isHighlyAvailable Boolean High-availability (HA) cluster?

getClusterID String Cluster identifier

getBrokerID String Broker identifier of affected broker

getBrokerAddress String Address of affected broker, in the form hostName:portNumber

Example:

host1:3000

isMasterBroker1

1 Conventional clusters only

Boolean Master broker affected?

Logging

3-48 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

com.sun.messaging.jms.server:type=Log,subtype=Config

A string representing this object name is defined as a static constant LOG_CONFIG_
MBEAN_NAME in the utility class MQObjectName.

Attributes
The log configuration MBean has the attributes shown in Table 3–85. The names of
these attributes are defined as static constants in the utility class LogAttributes.

Table 3–86 shows the possible values for the Level attribute. Each level includes those
above it (for example, WARNING includes ERROR). These values are defined as static
constants in the utility class LogLevel.

Notification
The log configuration MBean supports the notification shown in Table 3–87.

Log Monitor
Each broker has a single log monitor MBean, used for monitoring Message Queue
logging.

Object Name
The log monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Log,subtype=Monitor

Table 3–85 Log Configuration Attributes

Name Type Settable? Description

Level String Yes Logging level

Specifies the categories of logging information that can be written to an
output channel. See Table 3–86 for possible values.

RolloverBytes Long Yes File length, in bytes, at which output rolls over to a new log file

A value of -1 denotes an unlimited number of bytes (no rollover based on
file length).

RolloverSecs Long Yes Age of file, in seconds, at which output rolls over to a new log file

A value of -1 denotes an unlimited number of seconds (no rollover based
on file age).

Table 3–86 Log Configuration Logging Levels

Name Utility Constant Meaning

NONE LogLevel.NONE No logging

ERROR LogLevel.ERROR Log error messages

WARNING LogLevel.WARNING Log warning messages

INFO LogLevel.INFO Log informational messages

UNKNOWN LogLevel.UNKNOWN Logging level unknown

Table 3–87 Log Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Java Virtual Machine

Message Queue MBean Reference 3-49

A string representing this object name is defined as a static constant LOG_MONITOR_
MBEAN_NAME in the utility class MQObjectName.

Notifications
The log monitor MBean supports the notifications shown in Table 3–88. These
notifications are instances of the Message Queue JMX class LogNotification, and
their names are defined as static utility constants in that class.

Table 3–89 shows the methods defined in class LogNotification for obtaining details
about a log monitor notification.

Java Virtual Machine
This section describes the MBean used for monitoring the Java Virtual Machine (JVM).
The following subsection describes this MBean in detail.

JVM Monitor
Each broker has a single JVM monitor MBean, used for monitoring the Java Virtual
Machine (JVM).

Object Name
The JVM monitor MBean has the following object name:

Note: A notification listener registered for a particular logging
level will receive notifications only for that level and not for those
above or below it: for example, a listener registered for the
notification mq.log.level.WARNING will be notified only of WARNING
messages and not ERROR or INFO. To receive notifications for more
than one logging level, the listener must be explicitly registered for
each level separately.

Table 3–88 Log Monitor Notifications

Name Utility Constant Description

mq.log.level.ERROR LogNotification.LOG_LEVEL_ERROR Error message logged

mq.log.level.WARNING LogNotification.LOG_LEVEL_WARNING Warning message logged

mq.log.level.INFO LogNotification.LOG_LEVEL_INFO Informational message logged

Table 3–89 Data Retrieval Methods for Log Monitor Notifications

Method Result Type Description

getLevel String Logging level of logged message

See Table 3–86 for possible values.

getMessage String Body of logged message

Note: This MBean is useful only with the Java Development Kit
(JDK) version 1.4 or lower. JDK version 1.5 includes built-in
MBeans that provide more detailed information on the state of the
JVM.

Java Virtual Machine

3-50 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

com.sun.messaging.jms.server:type=JVM,subtype=Monitor

A string representing this object name is defined as a static constant JVM_MONITOR_
MBEAN_NAME in the utility class MQObjectName.

Attributes
The JVM monitor MBean has the attributes shown in Table 3–90. The names of these
attributes are defined as static constants in the utility class JVMAttributes.

Table 3–90 JVM Monitor Attributes

Name Type Settable? Description

TotalMemory Long No Current total memory, in bytes

InitMemory Long No Initial heap size at JVM startup, in bytes

FreeMemory Long No Amount of memory currently available for use, in bytes

MaxMemory Long No Maximum allowable heap size, in bytes

Any memory allocation attempt that would exceed this limit will cause an
OutOfMemoryError exception to be thrown.

A

Alphabetical Reference A-1

AAlphabetical Reference

Table A–1 is an alphabetical list of Message Queue JMX MBean attributes, with
cross-references to the relevant tables in this manual.

Table A–1 Alphabetical List of MBean Attributes

Attribute MBean Reference

AutoCreateQueueMaxNumActiveConsumers Destination Manager
Configuration

Table 3–44

AutoCreateQueueMaxNumBackupConsumers Destination Manager
Configuration

Table 3–44

AutoCreateQueues Destination Manager
Configuration

Table 3–44

AutoCreateTopics Destination Manager
Configuration

Table 3–44

AvgNumActiveConsumers Destination Monitor Table 3–38

AvgNumBackupConsumers Destination Monitor Table 3–38

AvgNumConsumers Destination Monitor Table 3–38

AvgNumMsgs Destination Monitor Table 3–38

AvgTotalMsgBytes Destination Monitor Table 3–38

BrokerID Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

ClientID Connection Monitor Table 3–24

ClientPlatform Connection Monitor Table 3–24

ClusterID Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–79

ConfigFileURL Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–79

ConnectionID Connection Configuration

Connection Monitor

Destination Monitor

Table 3–23

Table 3–24

Table 3–38

ConsumerFlowLimit Destination Configuration Table 3–32

CreatedByAdmin Destination Monitor Table 3–38

DiskReserved Destination Monitor Table 3–38

DiskUsed Destination Monitor Table 3–38

A-2 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

DiskUtilizationRatio Destination Monitor Table 3–38

DMQTruncateBody Destination Manager
Configuration

Table 3–44

Embedded Broker Monitor Table 3–4

FreeMemory JVM Monitor Table 3–90

HighlyAvailable Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–79

Host Connection Monitor Table 3–24

InitMemory JVM Monitor Table 3–90

InstanceName Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

Level Log Configuration Table 3–85

LimitBehavior Destination Configuration Table 3–32

LocalBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–79

LocalDeliveryPreferred Destination Configuration Table 3–32

LocalOnly Destination Configuration Table 3–32

LogDeadMsgs Destination Manager
Configuration

Table 3–44

MasterBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–79

MaxBytesPerMsg Destination Configuration

Destination Manager
Configuration

Table 3–32

Table 3–44

MaxMemory JVM Monitor Table 3–90

MaxNumActiveConsumers Destination Configuration Table 3–32

MaxNumBackupConsumers Destination Configuration Table 3–32

MaxNumMsgs Destination Configuration

Destination Manager
Configuration

Table 3–32

Table 3–44

MaxNumProducers Destination Configuration Table 3–32

MaxThreads Service Configuration

Service Manager Configuration

Table 3–8

Table 3–17

MaxTotalMsgBytes Destination Configuration

Destination Manager
Configuration

Table 3–32

Table 3–44

MinThreads Service Configuration

Service Manager Configuration

Table 3–8

Table 3–17

Table A–1 (Cont.) Alphabetical List of MBean Attributes

Attribute MBean Reference

Alphabetical Reference A-3

MsgBytesIn Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

MsgBytesOut Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

Name Destination Configuration

Destination Monitor

Service Configuration

Service Monitor

Table 3–32

Table 3–38

Table 3–8

Table 3–12

NextMessageID Destination Monitor Table 3–38

NumActiveConsumers Destination Monitor Table 3–38

NumActiveThreads Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

NumBackupConsumers Destination Monitor Table 3–38

NumConnections Connection Manager
Configuration

Connection Manager Monitor

Service Monitor

Table 3–26

Table 3–28

Table 3–12

NumConnectionsOpened Connection Manager Monitor

Service Monitor

Table 3–28

Table 3–12

NumConnectionsRejected Connection Manager Monitor

Service Monitor

Table 3–28

Table 3–12

NumConsumers Connection Monitor

Consumer Manager
Configuration

Consumer Manager Monitor

Destination Monitor

Service Monitor

Table 3–24

Table 3–59

Table 3–61

Table 3–38

Table 3–12

NumDestinations Destination Manager
Configuration

Destination Manager Monitor

Table 3–44

Table 3–49

NumMsgs Destination Manager Monitor

Destination Monitor

Table 3–49

Table 3–38

NumMsgsHeldInTransaction Destination Monitor Table 3–38

NumMsgsIn Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

NumMsgsInDMQ Destination Manager Monitor Table 3–49

Table A–1 (Cont.) Alphabetical List of MBean Attributes

Attribute MBean Reference

A-4 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

NumMsgsOut Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

NumMsgsPendingAcks Destination Monitor Table 3–38

NumMsgsRemote Destination Monitor Table 3–38

NumPktsIn Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

NumPktsOut Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

NumProducers Connection Monitor

Destination Monitor

Producer Manager
Configuration

Producer Manager Monitor

Service Monitor

Table 3–24

Table 3–38

Table 3–53

Table 3–55

Table 3–12

NumServices Service Manager Monitor Table 3–19

NumTransactions Transaction Manager
Configuration

Transaction Manager Monitor

Table 3–66

Table 3–68

NumTransactionsCommitted Transaction Manager Monitor Table 3–68

NumTransactionsRollback Transaction Manager Monitor Table 3–68

NumWildcards Destination Monitor Table 3–38

NumWildcardConsumers Consumer Manager Monitor

Destination Monitor

Table 3–61

Table 3–38

NumWildcardProducers Producer Manager Monitor

Destination Monitor

Table 3–55

Table 3–38

PeakMsgBytes Destination Monitor Table 3–38

PeakNumActiveConsumers Destination Monitor Table 3–38

PeakNumBackupConsumers Destination Monitor Table 3–38

PeakNumConsumers Destination Monitor Table 3–38

PeakNumMsgs Destination Monitor Table 3–38

PeakTotalMsgBytes Destination Monitor Table 3–38

PktBytesIn Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

PktBytesOut Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

Table A–1 (Cont.) Alphabetical List of MBean Attributes

Attribute MBean Reference

Alphabetical Reference A-5

Table A–2 is an alphabetical list of Message Queue JMX MBean operations, with
cross-references to the relevant tables in this manual.

Port Broker Configuration

Broker Monitor

Connection Monitor

Service Configuration

Service Monitor

Table 3–1

Table 3–4

Table 3–24

Table 3–8

Table 3–12

ResourceState Broker Monitor Table 3–4

ReloadXMLSchemaOn Failure Destination Configuration Table 3–32

ResourceState Broker Monitor Table 3–4

RolloverBytes Log Configuration Table 3–85

RolloverSecs Log Configuration Table 3–85

ServiceName Connection Monitor Table 3–24

State Destination Monitor

Service Monitor

Table 3–38

Table 3–12

StateLabel Destination Monitor

Service Monitor

Table 3–38

Table 3–12

Temporary Destination Monitor Table 3–38

ThreadPoolModel Service Configuration Table 3–8

TotalMemory JVM Monitor Table 3–90

TotalMsgBytes Destination Manager Monitor

Destination Monitor

Table 3–49

Table 3–38

TotalMsgBytesRemote Destination Monitor Table 3–38

TotalMsgBytesHeldInTransaction Destination Monitor Table 3–38

TotalMsgBytesInDMQ Destination Manager Monitor Table 3–49

Type Destination Configuration

Destination Monitor

Table 3–32

Table 3–38

UseDMQ Destination Configuration Table 3–32

User Connection Monitor Table 3–24

ValidateXMLSchemaEnabled Destination Configuration Table 3–32

Version Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

XMLSchemaURIList Destination Configuration Table 3–32

Table A–2 Alphabetical List of MBean Operations

Operation MBean Reference

commit Transaction Manager Configuration Table 3–67

Table A–1 (Cont.) Alphabetical List of MBean Attributes

Attribute MBean Reference

A-6 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

compact Destination Configuration

Destination Manager Configuration

Table 3–35

Table 3–45

create Destination Manager Configuration Table 3–45

destroy Connection Manager Configuration

Destination Manager Configuration

Table 3–27

Table 3–45

getActiveConsumerIDs Destination Monitor Table 3–41

getBackupConsumerIDs Destination Monitor Table 3–41

getBrokerAddresses Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–80

getBrokerIDs Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–80

getBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–80

getBrokerInfoByAddress Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–80

getBrokerInfoByID Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–80

getConnection Destination Monitor Table 3–41

getConnections Connection Manager Configuration

Connection Manager Monitor

Service Monitor

Table 3–27

Table 3–29

Table 3–14

getConsumerIDs Connection Monitor

Consumer Manager Configuration

Consumer Manager Monitor

Destination Monitor

Service Monitor

Table 3–25

Table 3–60

Table 3–62

Table 3–41

Table 3–14

getConsumerInfo Consumer Manager Monitor Table 3–62

getConsumerInfoByID Consumer Manager Monitor Table 3–62

getConsumerWildcards Consumer Manager Monitor

Destination Monitor

Table 3–62

Table 3–41

getDestinations Destination Manager Configuration

Destination Manager Monitor

Table 3–45

Table 3–50

getNumWildcardConsumers Consumer Manager Monitor

Destination Monitor

Table 3–62

Table 3–41

getNumWildcardProducers Producer Manager Monitor

Destination Monitor

Table 3–56

Table 3–41

Table A–2 (Cont.) Alphabetical List of MBean Operations

Operation MBean Reference

Alphabetical Reference A-7

getProducerIDs Connection Monitor

Destination Monitor

Producer Manager Configuration

Producer Manager Monitor

Service Monitor

Table 3–25

Table 3–41

Table 3–54

Table 3–56

Table 3–14

getProducerInfo Producer Manager Monitor Table 3–56

getProducerInfoByID Producer Manager Monitor Table 3–56

getProducerWildcards Destination Monitor

Producer Manager

Table 3–41

Table 3–56

getProperty Broker Configuration Table 3–2

getService Connection Monitor Table 3–25

getServices Service Manager Configuration

Service Manager Monitor

Table 3–18

Table 3–20

getTemporaryDestinations Connection Monitor Table 3–25

getTransactionIDs Transaction Manager Configuration

Transaction Manager Monitor

Table 3–67

Table 3–69

getTransactionInfo Transaction Manager Monitor Table 3–69

getTransactionInfoByID Transaction Manager Monitor Table 3–69

getWildcards Destination Monitor Table 3–41

pause Destination Configuration

Destination Manager Configuration

Service Configuration

Service Manager Configuration

Table 3–35

Table 3–45

Table 3–9

Table 3–18

purge Consumer Manager Configuration

Destination Configuration

Table 3–60

Table 3–35

quiesce Broker Configuration Table 3–2

reload Cluster Configuration Table 3–75

resetMetrics Broker Configuration Table 3–2

restart Broker Configuration Table 3–2

resume Destination Configuration

Destination Manager Configuration

Service Configuration

Service Manager Configuration

Table 3–35

Table 3–45

Table 3–9

Table 3–18

rollback Transaction Manager Configuration Table 3–67

shutdown Broker Configuration Table 3–2

takeover Broker Configuration Table 3–2

unquiesce Broker Configuration Table 3–2

Table A–2 (Cont.) Alphabetical List of MBean Operations

Operation MBean Reference

A-8 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

Table A–3 is an alphabetical list of Message Queue JMX MBean notifications, with
cross-references to the relevant tables in this manual.

Table A–3 Alphabetical List of MBean Notifications

Notification MBean Reference

jmx.attribute.change Broker Configuration

Cluster Configuration

Destination Configuration

Destination Manager Configuration

Log Configuration

Service Configuration

Table 3–3

Table 3–78

Table 3–37

Table 3–48

Table 3–87

Table 3–10

mq.broker.quiesce.complete Broker Monitor Table 3–5

mq.broker.quiesce.start Broker Monitor Table 3–5

mq.broker.resource.state.change Broker Monitor Table 3–5

mq.broker.shutdown.start Broker Monitor Table 3–5

mq.broker.takeover.complete Broker Monitor

Cluster Monitor

Table 3–5

Table 3–83

mq.broker.takeover.fail Broker Monitor

Cluster Monitor

Table 3–5

Table 3–83

mq.broker.takeover.start Broker Monitor

Cluster Monitor

Table 3–5

Table 3–83

mq.cluster.broker.down Cluster Monitor Table 3–83

mq.cluster.broker.join Broker Monitor

Cluster Monitor

Table 3–5

Table 3–83

mq.connection.close Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.connection.open Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.connection.reject Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.destination.compact Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.create Destination Manager Monitor Table 3–51

mq.destination.destroy Destination Manager Monitor Table 3–51

mq.destination.pause Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.purge Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.resume Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.log.level.ERROR Log Monitor Table 3–88

mq.log.level.INFO Log Monitor Table 3–88

Alphabetical Reference A-9

mq.log.level.WARNING Log Monitor Table 3–88

mq.service.pause Service Manager Monitor

Service Monitor

Table 3–21

Table 3–15

mq.service.resume Service Manager Monitor

Service Monitor

Table 3–21

Table 3–15

mq.transaction.commit Transaction Manager Monitor Table 3–72

mq.transaction.prepare Transaction Manager Monitor Table 3–72

mq.transaction.rollback Transaction Manager Monitor Table 3–72

Table A–3 (Cont.) Alphabetical List of MBean Notifications

Notification MBean Reference

A-10 Open Message Queue 4.5.2 Developer's Guide for JMX Clients

	Contents
	Preface
	1 Introduction to JMX Programming for Message Queue Clients
	JMX Architecture
	Message Queue MBeans
	Resource MBeans
	Manager MBeans
	Object Names

	2 Using the JMX API
	Interface Packages
	Utility Classes
	Connecting to the MBean Server
	Obtaining a JMX Connector from an Admin Connection Factory
	Obtaining a JMX Connector Without Using an Admin Connection Factory

	Using MBeans
	Accessing MBean Attributes
	Invoking MBean Operations
	Receiving MBean Notifications

	3 Message Queue MBean Reference
	Brokers
	Broker Configuration
	Broker Monitor

	Connection Services
	Service Configuration
	Service Monitor
	Service Manager Configuration
	Service Manager Monitor

	Connections
	Connection Configuration
	Connection Monitor
	Connection Manager Configuration
	Connection Manager Monitor

	Destinations
	Destination Configuration
	Destination Monitor
	Destination Manager Configuration
	Destination Manager Monitor

	Message Producers
	Producer Manager Configuration
	Producer Manager Monitor

	Message Consumers
	Consumer Manager Configuration
	Consumer Manager Monitor

	Transactions
	Transaction Manager Configuration
	Transaction Manager Monitor

	Broker Clusters
	Cluster Configuration
	Cluster Monitor

	Logging
	Log Configuration
	Log Monitor

	Java Virtual Machine
	JVM Monitor

	A Alphabetical Reference

