

Open Message Queue
Release Notes

Release 5.1.1

September 2017

This book describes new features, compatibility issues, and
existing bugs for the Message Queue 5.1.1, 5.1 and earlier
releases.

Open Message Queue Release Notes, Release 5.1.1

Copyright © 2013, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Preface

This book provides information about concepts and procedures for developing Java
messaging applications (Java clients) that work with Message Queue.

This preface consists of the following sections:

■ Documentation Conventions

■ Related Documentation

■ Documentation

■ Documentation Accessibility

Documentation Conventions
This section describes the following conventions used in Message Queue
documentation:

■ Typographic Conventions

■ Symbol Conventions

■ Shell Prompt Conventions

■ Directory Variable Conventions

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear
bold online.

iv

Symbol Conventions
The following table explains symbols that might be used in this book.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for
the default UNIX system prompt and superuser prompt for the C shell, Bourne shell,
Korn shell, and for the Windows operating system.

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which
represent environment variables needed by Message Queue. (How you set the
environment variables varies from platform to platform.)

The following table describes the directory variables that might be found in this book
and how they are used. Some of these variables refer to the directory mqInstallHome,
which is the directory where Message Queue is installed to when using the installer or
unzipped to when using a zip-based distribution.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or
the n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release
it, and then press the
subsequent keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Note: In this book, directory variables are shown without
platform-specific environment variable notation or syntax (such as
$IMQ_HOME on UNIX). Non-platform-specific path names use UNIX
directory separator (/) notation.

v

Related Documentation
The information resources listed in this section provide further information about
Message Queue in addition to that contained in this manual. The section covers the
following resources:

■ Message Queue Documentation Set

■ Java Message Service (JMS) Specification

■ JavaDoc

■ Example Client Applications

■ Online Help

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the
following table in the order in which you might normally use them. These documents
are available at https://javaee.github.io/openmq/Documentation.html.

Variable Description

IMQ_HOME The Message Queue home directory:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
HOME is as-install-parent/mq, where as-install-parent is the parent directory
of the GlassFish Server base installation directory, glassfish5 by
default for MQ 5.1.1 and glassfish4.1 for MQ 5.0.

■ For installations of Open Message Queue, IMQ_HOME is
mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set as
an environment variable to point to any directory or will default as
described below:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
VARHOME defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to
mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executable files. By default,
Message Queue looks for and uses the latest JDK, but you can optionally set
the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

Document Audience Description

Technical Overview Developers and
administrators

Describes Message Queue concepts, features, and
components.

Release Notes Developers and
administrators

Includes descriptions of new features, limitations,
and known bugs, as well as technical notes.

Administration Guide Administrators,
also recommended
for developers

Provides background and information needed to
perform administration tasks using Message
Queue administration tools.

Developer's Guide for
Java Clients

Developers Provides a quick-start tutorial and programming
information for developers of Java client programs
using the Message Queue implementation of the
JMS or SOAP/JAXM APIs.

vi

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service Specification.
This document can be found at the URL
https://javaee.github.io/jms-spec/.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in
Message Queue installations at IMQ_HOME/javadoc/index.html. This documentation
can be viewed in any HTML browser. It includes standard JMS API documentation as
well as Message Queue-specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are included in Message Queue installations at IMQ_
HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at IMQ_
HOME/examples/C. See the README files located in this directory and its subdirectories
for descriptive information about the example applications.

For 5.1 and 5.1.1: Example C client applications are available in MQ source code
bundles at https://github.com/javaee/openmq/releases

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in
Message Queue installations at IMQ_HOME/examples/jmx. See the README files located in
this directory and its subdirectories for descriptive information about the example
applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
"Command Line Reference" in Open Message Queue Administration Guide. The Message
Queue graphical user interface (GUI) administration tool, the Administration Console,
also includes a context-sensitive help facility; for details, see "Administration Console
Online Help" in Open Message Queue Administration Guide.

Developer's Guide for
C Clients

Developers Provides programming and reference
documentation for developers of C client programs
using the Message Queue C implementation of the
JMS API (C-API).

Developer's Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Document Audience Description

vii

Documentation
For additional information see:

■ Documentation

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

viii

1

Release Notes 1-1

1Release Notes

These release notes contain important information available at the time of release of
Message Queue 5.1.1. New features and enhancements, known issues and limitations,
and other information are addressed here. Read this document before you begin using
Message Queue 5.1.1.

The most up-to-date version of these release notes can be found at
https://javaee.github.io/openmq/Documentation.html

Check the web site prior to installing and setting up your software and then
periodically thereafter to view the most up-to-date release notes and product.

These release notes contain the following sections:

■ Release Notes Revision History

■ About Message Queue 5.1.1

■ Message Queue 5.1 Supported Platforms and Components

■ Bugs Fixed in Message Queue 5.1.1

■ About Message Queue 5.1

■ New Features in Message Queue 5.1

■ Bugs Fixed in Message Queue 5.1

■ Features to be Deprecated in a Future Release

■ Installation

■ Compatibility Considerations

■ Known Issues and Limitations

■ Redistributable Files

■ Additional Resources

■ New Features in Previous Message Queue 5.0

■ New Features in Previous Message Queue 4 Releases

Third-party URLs are referenced in this document and provide additional, related
information.

Oracle is not responsible for the availability of third-party Web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Oracle will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content, goods,
or services that are available on or through such sites or resources.

Release Notes Revision History

1-2 Open Message Queue 5.1.1 Release Notes

Release Notes Revision History
The following table lists the dates for all 4.x and 5.x releases of the Message Queue
product and describes the changes in this document associated with each release.

About Message Queue 5.1.1
Message Queue is a full-featured message service that provides reliable, asynchronous
messaging in conformance with the Java Messaging Specification (JMS). Message
Queue 5.1.1 conforms to JMS 2.0.1 and is integrated into GlassFish 5.0 which conforms
to the Java Platform, Enterprise Edition 8 Specification (Java EE 8). In addition,
Message Queue provides features that go beyond the JMS specification to meet the
needs of large-scale enterprise deployments.

Table 1–1 Revision History

Date Description of Changes

September 2017 Release of this document for Message Queue 5.1.1

September 2014 Release of this document for Message Queue 5.1

June 2013 Release of this document for Message Queue 5.0.

May 2013 Release of this document for Message Queue 4.5.2.1.

February 2012 Release of this document for Message Queue 4.5.2.

July 2011 Second release of this document for Message Queue 4.5. Corrects errors and
omissions, and adds information about bug 6804819.

February 2011 Release of this document for Message Queue 4.5.

June 2010 Release of this document for Message Queue 4.4.2.

June 2010 Second release of this document for Message Queue 4.4 Update 1. Corrects
errors and omissions, and adds information about bug 6925362.

December 2009 Release of this document for Message Queue 4.4 Update 1. Adds new
features for this release and removes outdated installation issues that
applied to the previous installation program.

December 2009 Second release of this document for Message Queue 4.4. Corrects errors and
omissions.

October 2009 Release of this document for Message Queue 4.4. Adds new features for
this release.

May 2009 Initial release of this document for Message Queue 4.4 Beta. Adds new
features for this release.

December 2008 Release of this document for Message Queue 4.3. Adds new features for
this release.

August 2008 Release of this document for Message Queue 4.2. Adds new features for
this release.

September 2007 Third release of this document for Message Queue 4.1. Adds description of
support for Java Enterprise System Monitoring Framework, fixed C ports,
bug fixes, and other features.

April 2007 Second release of this document for Message Queue 4.1 Beta. Adds high
availability feature.

January 2007 Initial release of this document for Message Queue 4.1 Beta. Adds
description of JAAS support.

May 2006 Initial release of this document for Message Queue 4.0.

Message Queue 5.1 Supported Platforms and Components

Release Notes 1-3

Message Queue 5.1.1 is an incremental release participating in the 5.0 release of
GlassFish Server. Message Queue 5.1.1 can also be downloaded from
https://javaee.github.io/openmq/Downloads.html

Unlike previous releases of Message Queue, the Message Queue 5.1.1 binary release
does not include the C-API library although the C-API source code is available at
https://github.com/javaee/openmq

Bugs Fixed in Message Queue 5.1.1
The following table lists the bugs fixed in Message Queue 5.1.1. Some of these issues
are marked with "(OpenMQ)", which indicates the issue was reported in the issue
tracker of the Open Message Queue open source project upon which Oracle GlassFish
Server Message Queue is based.

The following table lists the bugs fixed in Message Queue 5.1.1

About Message Queue 5.1
Message Queue is a full-featured message service that provides reliable, asynchronous
messaging in conformance with the Java Messaging Specification (JMS) 2.0 and the
Java Platform, Enterprise Edition 7 Specification (Java EE 7). In addition, Message
Queue provides features that go beyond the JMS specification to meet the needs of
large-scale enterprise deployments.

Message Queue 5.1 is an incremental release participating in the 4.1 release of
GlassFish Server. As a consequence, no separately downloadable, installable
distribution of Message Queue 5.1 is available.

Message Queue 5.1 Supported Platforms and Components
This section covers the following topics regarding Message Queue 5.1 system
requirements:

■ Platform Support

■ System Virtualization Support

■ Optional Support Components

Platform Support
As a participant in the 4.1 release of GlassFish Server, Message Queue 5.1 supports the
operating environments, databases, LDAP servers, and hardware listed in the Oracle

Table 1–2 Bugs Fixed in Message Queue 5.1.1

Bug Description

20402088 Broker HA monitor thread should be daemon thread

19906529 Cluster listener thread exit when rogue client send pkt with huge pkt size field

12296963 Fix for Sybase "INCORRECT SYNTAX NEAR THE KEYWORD 'UNION'

Note: There are some additional issues listed at github location
OpenMQ Issues that are addressed in Message Queue 5.1.1.

New Features in Message Queue 5.1

1-4 Open Message Queue 5.1.1 Release Notes

GlassFish Server 4.1 Certification Matrix, which is accessible at
(https://javaee.github.io/glassfish/).

System Virtualization Support
System virtualization is a technology that enables multiple operating system (OS)
instances to execute independently on shared hardware. Functionally, software
deployed to an OS hosted in a virtualized environment is generally unaware that the
underlying platform has been virtualized. Oracle performs testing of its products on
select system virtualization and OS combinations to help validate that Oracle products
continue to function on properly sized and configured virtualized environments as
they do on non-virtualized systems.

Optional Support Components
In addition to the software components listed in the Oracle GlassFish Server 4.1
Certification Matrix, Table 1–3 shows components that you can install to provide
additional support for Message Queue clients.

New Features in Message Queue 5.1
Message Queue 5.1 provides support for the Java EE 7 release. It includes new
features, some feature enhancements, and bug fixes. This section includes a
description of new features in this releases:

MQ JMS Client over WebSocket
MQ has traditionally supported HTTP Servlet Tunneling for MQ Java clients to
communicate with a message broker over HTTP/HTTPS transport protocol. This
new feature allows MQ JMS clients to communicate with MQ broker over WebSocket
transport. Please see details at https://javaee.github.io/openmq/www/5.0.1/ws.html

MQ STOMP Client over WebSocket
STOMP is a simple text streaming oriented messaging protocol which provides
interoperable wire format for any STOMP client to communicate with a STOMP
messaging broker. MQ broker has provided STOMP messaging service via the 'stomp'
bridge, which supports STOMP on TCP or SSL transport. This new feature allows

Table 1–3 Optional Support Components

Component Supports Supported Versions

Java Naming and
Directory Interface
(JNDI)

Administered object
support and LDAP user
repository

JNDI Version 1.2.1

LDAP Service Provider, Version 1.2.2

C Compiler and
compatible C++
runtime library

Message Queue C clients Solaris: Oracle Solaris Studio, Version 12 or
later, C++ compiler with standard mode
and C compiler

Linux: gcc/g++, Version 3.4.6

Windows: Microsoft Windows Visual
Studio, Version 2008 SP1

Netscape Portable
Runtime (NSPR)

Message Queue C clients Version 4.8.6

Network Security
Services (NSS)

Message Queue C clients Version 3.12.8

Compatibility Considerations

Release Notes 1-5

STOMP clients communicate to MQ broker over WebSocket. Please see details at
https://javaee.github.io/openmq/www/5.0.1/ws.html

Bugs Fixed in Message Queue 5.1
The following table lists the bugs fixed in Message Queue 5.1. Some of these issues are
marked with "(OpenMQ)", which indicates the issue was reported in the issue tracker
of the Open Message Queue open source project upon which Oracle GlassFish Server
Message Queue is based.

The following table lists the bugs fixed in Message Queue 5.1

Installation
Message Queue 5.1 is installed as a sub-directory of the GlassFish 4.1 installation. For
installation information, see the GlassFish Server Open Source Edition Installation Guide.

Compatibility Considerations
This section covers compatibility considerations when using Message Queue.

■ Message Queue 5.1 must be used with Java SE 7. This general JMS 2.0 and Java EE
7 requirement implies that whenever Message Queue 5.1 jars are used in your
classpath, you must use Java 7. For information on how to set the Java runtime for
a broker, see "Using an "Alternative Java Runtime" in the Open Message Queue
Administration Guide.

■ Message Queue 5.1 brokers now use the Java java.util.logging logger.

■ Message Queue uses many interfaces that may change over time. Scalability of
Message Queue Interfaces in Open Message Queue Administration Guide classifies
the interfaces according to their stability. The more stable an interface, the less
likely it is to change in subsequent versions of the product.

■ HADB database is no longer supported in the Message Queue 5.1 release.

Table 1–4 Bugs Fixed in Message Queue 5.1

Bug Description

18918671 A broker thread removing temp destination can deadlock with temp
destination's reconnect reaper thread

18868362 imqbrokerd -startrmiregistry -usermiregistry option precedence order incorrect

18434462 Persisting in message store within synchronized code is extremely non-scalable

18125457 Remove IMQVARHOME/IMQHOME information from portmapper output

17738518 Session.commit should auto-rollback the transaction if broker returns
Status.GONE

17317188 'imqcmd restart broker' should always pass "nofailover=true' to broker

17316839 accesscontrol: produce.allow '*' and produce.deny combination not work as
expected

17313998 JDBC connection pool reaper thread logs NPE if no idle connection.

Note: There are some additional issues listed at github location
OpenMQ Issues that are addressed in Message Queue 5.1.

Features to be Deprecated in a Future Release

1-6 Open Message Queue 5.1.1 Release Notes

Features to be Deprecated in a Future Release
The following features will be deprecated in a future release:

■ Message-based monitoring

Message-based monitoring makes use of the broker's configurable Metrics
Message Producer to write metrics data into JMS messages, which are then sent to
metrics topic destinations, depending on the type of metrics information contained
in the messages. This metrics information can then be accessed by writing a client
application that subscribes to the appropriate metrics topic destination, consumes
its messages, and processes the data as desired.

The message-based monitoring feature has been supplanted by the
Administration API that was introduced in MQ 4.0 (see Support for JMX
Administration API). The JMX API is more comprehensive (it includes more
metrics data than is written to topic destinations) and is based on the JMX
industry standard.

There is no compelling reason to use message-based monitoring now that Message
Queue supports the JMX API. Information about message-based monitoring will
remain in the Message Queue JMX until the feature is formally deprecated.

■ Clear Text Passfile

Using a clear text passfile is not recommended and support will be removed in a
future release. Oracle recommends existing plain text passfiles be obfuscated by
running imqusermgr encode. See "Password Files" in the Open Message Queue
Administration Guide.

Known Issues and Limitations
This section contains a list of the known issues with Message Queue 5.1. The following
product areas are covered:

■ Deprecated Password Option

■ Administration/Configuration Issues

■ Broker Issues

■ Broker Clusters

■ SOAP Support

For a list of current bugs, their status, and workarounds, see the OpenMQ Issues.
Please check that page before you report a new bug. Although all Message Queue
bugs are not listed, the page is a good starting place if you want to know whether a
problem has been reported.

To report a new bug or submit a feature request, please file an issue at
https://github.com/javaee/openmq/.

Deprecated Password Option
In previous versions of Message Queue, you could use the —p or —password option to
specify a password interactively for the following commands: imqcmd, imqbrokerd,
and imdbmgr. Beginning with version 4.0, these options have been deprecated.

Instead, you can create a password file that specifies the relevant passwords and
reference the password file using the -passfile command option, or simply enter a
password when prompted by the command.

Known Issues and Limitations

Release Notes 1-7

A password file can contain one or more of the passwords listed below.

■ A keystore password used to open the SSL keystore. Use the
imq.keystore.password property to specify this password.

■ An LDAP repository password used to connect securely with an LDAP directory if
the connection is not anonymous. Use the imq.user_repository.ldap.password
property to specify this password.

■ A JDBC database password used to connect to a JDBC-compliant database. Use the
imq.persist.jdbc.vendorName.password property to specify this password. The
vendorName component of the property name is a variable that specifies the
database vendor. Choices include hadb, derby, pointbase, oracle, or mysql.

■ A password to the imqcmd command (to perform broker administration tasks). Use
the imq.imqcmd.password property to specify this password.

In the following example, the password to the JDBC database is set in the password
file to abracadabra.

imq.persist.jdbc.mysql.password=abracadabra

You can use a password file in one of the following ways.

■ Configure the broker to use the password file by setting the following properties
in the broker's config.properties file.

imq.passfile.enabled=trueimq.passfile.dirpath=passwordFileDirectoryimq.pas
sfile.name=passwordFileName

■ Use the -passfile option of the relevant command, for example:

imqbrokerd -passfile passwordFileName

Administration/Configuration Issues
The following issues pertain to administration and configuration of Message Queue.

■ On Windows platforms, you need to manually add the Message Queue broker as a
Windows service using the imqsvcadm command. The installer does not do this for
you.

■ On Windows platforms, the built-in Windows Firewall, which is enabled by
default, must be manually configured with a firewall rule that allows the broker to
accept incoming connections from clients. (Bug 6675595)

1. Double-click on Windows Firewall in the Control Panel

You will have to click Continue on the User Account Control dialog for the
Windows Firewall Settings dialog to open.

2. In the Windows Firewall Settings dialog, click the Exceptions tab.

3. Click Add program.

4. In the Add a Program dialog, select java.exe and click Browse.

Windows identifies the broker process as a Java Platform SE binary. Therefore,
locate the java.exe used by the broker.

5. Click Change scope.

6. In the Change Scope dialog, select "Any computer (including those on the
Internet."

7. Click OK.

Known Issues and Limitations

1-8 Open Message Queue 5.1.1 Release Notes

8. In the Add a Program dialog, click OK.

9. In the Windows Firewall Settings dialog, click OK.

■ On Windows platforms, the imqadmin and imqobjmgr commands throw an error
when the CLASSPATH contains double quotes. (Bug 5060769)

Workaround: Open a command prompt window and unset the CLASSPATH:

set classpath=

Then run the desired command the same command prompt window, for example:

mqInstallHome\mq\bin\imqadmin

■ The -javahome option in all Solaris and Windows scripts does not work if the
value provided contains a space. (Bug 4683029)

The javahome option is used by Message Queue commands and utilities to specify
an alternate Java compatible runtime to use. However, the path name to the
alternate Java runtime must not contain spaces. The following are examples of
paths that include spaces.

Windows: C:\jdk 1.7

Solaris: /work/java 1.7

Workaround: Install the Java runtime at a location or path that does not contain
spaces.

■ The imqQueueBrowserMaxMessagesPerRetrieve attribute specifies the maximum
number of messages that the client runtime retrieves at one time when browsing
the contents of a queue. The attribute affects how the queued messages are
batched, to be delivered to the client runtime, but it does not affect the total
number of messages browsed. The attribute only affects the browsing mechanism,
it does not affect queue message delivery. (Bug 6387631)

■ On Linux platform running SELinux, the Update Center pkg command fails
(Bug 6892062)

Workaround: This issue is caused by a known issue in Update Center
UPDATECENTER2-1211 (. Use the following command to enable pkg to function
on SELinux with enforcement enabled:

chcon -f -t textrel_shlib_t $IMAGE/pkg/vendor-packages/OpenSSL/crypto.so

Broker Issues
■ When a JMS client using the HTTP connection service terminates abruptly (for

example, using Ctrl-C) the broker takes approximately one minute before
releasing the client connection and all the associated resources.

If another instance of the client is started within the one minute period and if it
tries to use the same ClientID, durable subscription, or queue, it might receive a
"Client ID is already in use" exception. This is not a real problem; it is just the side
effect of the termination process described above. If the client is started after a
delay of approximately one minute, everything should work fine.

Additional Resources

Release Notes 1-9

Broker Clusters
■ A client can only browse the contents of queues that are located on its home

broker. The client can still send messages to any queue or consume messages from
any queue in the cluster; the limitation only affects queue browsing.

■ In a conventional cluster that includes version 4.3 brokers, all brokers must be
version 3.5 or later.

■ When converting from a conventional cluster to an enhanced cluster, you can use
the Message Queue Database Manager utility (imqdbmgr) to convert an existing
standalone JDBC-based data store to a shared JDBC data store as documented in
"Cluster Conversion: JDBC-Based Data Store" in Open Message Queue
Administration Guide.

SOAP Support
You need to be aware of two issues related to SOAP support

■ Beginning with the release of version 4.0 of Message Queue, support for SOAP
administered objects is discontinued.

■ SOAP development depends upon several files: SUNWjaf, SUNWjmail, SUNWxsrt,
and SUNWjaxp. In version 4.1 of Message Queue, these files are available to you
only if you are running Message Queue with JDK version 1.6.0 or later.

■ Previously the SAAJ 1.2 implementation .jar directly referenced mail.jar. In SAAJ
1.3 this reference was removed; thus, Message Queue clients must explicitly put
mail.jar in CLASSPATH.

Redistributable Files
Oracle GlassFish Server Message Queue contains the following set of files which you
may use and freely distribute in binary form:

fscontext.jar
imq.jar
imqjmx.jar
imqxm.jar
imqums.war
jaxm-api.jar
jms.jar
libmqcrt.sl (HP-UX)
libmqcrt.so (UNIX)
mqcrt1.dll (Windows)
In addition, you can also redistribute the LICENSE and COPYRIGHT files.

Additional Resources
Useful Message Queue information can be found at the following Internet locations:

■ Open Message Queue (Open MQ) website

https://javaee.github.io/openmq/

■ Java Message Service Specification website

https://javaee.github.io/jms-spec/

New Features in Previous Message Queue 5.0

1-10 Open Message Queue 5.1.1 Release Notes

New Features in Previous Message Queue 5.0
Message Queue 5.0 is a minor release providing support for the Java Messaging
Specification (JMS), version 2.0 and the Java EE 7 release. It included a few new
features, some feature enhancements, and bug fixes. This section includes a
description of new features in this releases:

Support for JMS 2.0 Features and Enhancements
Message Queue 5.0 implements the JMS 2.0 API. This introduces a completely new
Simplified API that makes JMS much simpler and easier to use. The existing Classic
API remains and a number of improvements have been made to make the Classic API
simpler and easier to use as well. For more information, see "The JMS Simplified API"
in Open Message Queue Developer's Guide for Java Clients.

Other changes introduced into JMS 2.0 include:

■ Designating a topic subscription as being shared, which allows it to have more than
one consumer. Setting clientId is optional for shared subscriptions.

■ A new method getBody has been added to Message which allows the message
body to be extracted without the need to cast to a particular subtype.

■ A new method, setDeliveryDelay, has been added to MessageProducer which
allows a delivery delay to be specified. A message will not be delivered to a
consumer until after the specified delay has elapsed.

■ New send methods have been added to MessageProducer which allow messages
to be sent asynchronously. These methods permit the JMS provider to perform
part of the work involved in sending the message in a separate thread. When the
send is complete, a callback method is invoked on an object supplied by the caller.

■ The Connection, Session, MessageProducer, MessageConsumer and QueueBrowser
interfaces have been modified to extend the java.lang.Autocloseable interface.
This means that applications can create these objects using a Java SE 7
try-with-resources statement which removes the need for applications to
explicitly call close() when these objects are no longer required.

■ The existing standard message property JMSXDeliveryCount has been made
mandatory. It was previously optional. This means that Message Queue will now
always set this property to the number of times the message has been delivered.

Additional Message Queue 5.0 Enhancements
This release of Message Queue also includes the following changes and enhancements:

■ Previously, the JMXDeliveryCount was used as a property to track the number of
times a message was delivered to a given consumer before being placed on the
DMQ. To conform to the JMS 2.0 specification, this Message Queue release
introduces JMS_SUN_DMQ_DELIVERY_COUNT as a new property for that purpose.

■ A new connection factory property, imqAsyncSendCompletionWaitTimeout, sets
the amount of time, in milliseconds, that a MQ client waits for an asynchronous
send to complete before calling CompletionListener.onException.

■ The shared threadpool_model for a connection service that was used in previous
releases has been replaced by a new implementation and the shared threadpool_
model is now able to support tls protocoltype.

New Features in Previous Message Queue 4 Releases

Release Notes 1-11

■ A new administrative interface to provide the ability to obfuscate passwords in a
passfile for Message Queue broker command line utilities. See "Password Files"
in the Open Message Queue Administration Guide.

■ Support for DB reconnect in the Message Queue JDBC Connection Pool. See
"JDBC-Based Persistence" and "To Connect Brokers Using a Cluster Configuration
File" in the Open Message Queue Administration Guide.

■ The following C API functions are added this release to support shared durable
subscribers:

■ MQCreateSharedDurableMessageConsumer

■ MQCreateSharedMessageConsumer

■ MQCreateAsyncSharedDurableMessageConsumer

■ MQCreateAsyncSharedMessageConsumer

See "Reference" in the Open Message Queue Developer's Guide for C Clients.

■ The following C API functions were added to support message delivery delay:

■ MQGetDeliveryDelay function

■ MQSetDeliveryDelay function

■ MQ_DELIVERY_TIME_HEADER_PROPERTY property

See "Reference" in the Open Message Queue Developer's Guide for C Clients.

■ The NumMsgsInDelayDelivery attribute was added to the DestinationMonitor
MBean. See "Message Queue MBean Reference" in Open Message Queue Developer's
Guide for JMX Clients.

New Features in Previous Message Queue 4 Releases
The new features in previous releases of the Message Queue 4 family are described in
the following sections:

■ New Features in Message Queue 4.5

■ New Features in Message Queue 4.4.2

■ New Features in Message Queue 4.4 Update 1

■ New Features in Message Queue 4.4

■ New Features in Message Queue 4.3

■ New Features in Message Queue 4.2

■ New Features in Message Queue 4.1

■ New Features in Message Queue 4.0

New Features in Message Queue 4.5
Message Queue 4.5 is an incremental release that includes a number of feature
enhancements and bug fixes. Two of the most important features in this release relate
to broker clusters, and another relates to consumer event notifications for Java clients:

Conventional clusters of peer brokers
This release introduces a new type of conventional cluster, the conventional cluster of
peer brokers. Unlike a conventional cluster with a master broker, a conventional
cluster of peer brokers maintains the cluster configuration change record in a shared

New Features in Previous Message Queue 4 Releases

1-12 Open Message Queue 5.1.1 Release Notes

JDBC data store instead of in the master broker. Thus, brokers can access cluster
configuration information whether any other brokers in the cluster are running or not.
For more information about conventional clusters of peer brokers, see "Broker
Clusters" in Open Message Queue Technical Overview. For information about configuring
and managing conventional clusters of peer brokers, see "Configuring and Managing
Broker Clusters" in Open Message Queue Administration Guide.

Dynamically changing the master broker
Previously, to change the master broker in a conventional cluster from one broker to
another, you had to stop all brokers, manually migrate the cluster configuration
change record from the old master broker to the new one, and then start all brokers.
This release provides the ability to change the master broker dynamically without
stopping the cluster or performing manual migration tasks. For more information, see
"Changing the Master Broker in a Conventional Cluster with Master Broker" in Open
Message Queue Administration Guide.

Consumer event notifications for Java clients
This release introduces consumer event notifications for Java clients, which allow a
Java client to listen for the existence of consumers on a destination. Thus, for example,
a producer client can start or stop producing messages to a given destination based on
the existence of consumers on the destination. For more information, see "Consumer
Event Notification" in Open Message Queue Developer's Guide for Java Clients.

New Features in Message Queue 4.4.2
Message Queue 4.4.2 is a minor release that includes a number of feature
enhancements and bug fixes. This section describes the new features included in this
release.

■ Message Queue now supports literal IPv6 addresses as broker host names when
the hostname:port format is used. Previously, literal IPv6 addresses were only
supported for the hostname format. If you use a literal IPv6 address, its format
must conform to RFC2732 (http://www.ietf.org/rfc/rfc2732.txt),
Format for Literal IPv6 Addresses in URL's.

■ To address situations related to failover and restart of brokers in enhanced
clusters, these features have been added:

– The -reset takeover-then-exit option of the imqbrokerd command

– The imq.cluster.ha.takeoverWaitTimeout broker property

■ To provide more configurable control of connections to a JDBC data store, these
broker properties have been added:

– imq.persist.jdbc.connection.timeoutIdle

– imq.persist.jdbc.connection.validateOnGet

– imq.persist.jdbc.connection.validationQuery

■ To control generation of informational log messages about successful message
transfers across a JMS bridge, the log-message-transfer attribute has been added
to the jmsbridge element in the XML configuration file for a JMS bridge.

■ To enable the STOMP bridge service to bind to a specific network interface, the
imq.bridge.stomp.hostname broker property has been added.

New Features in Previous Message Queue 4 Releases

Release Notes 1-13

New Features in Message Queue 4.4 Update 1
Message Queue 4.4 Update 1 is a minor release that includes a number of feature
enhancements and bug fixes. This section describes the new features included in this
release:

■ New Installation Program

■ Transaction Log Support for Clusters

■ In-Process Broker

New Installation Program
Message Queue 4.4 Update 1 provides a new multiplatform installer based on the
pkq(5) system, also known as IPS or Image Packaging System. For information about
this installer, see the Sun GlassFish Message Queue 4.4 Update 1 Installation Guide.

Transaction Log Support for Clusters
Message Queue 4.4 Update 1 adds a transaction persistence mechanism for file-based
data stores that supports broker clusters. This mechanism provides other features as
well, as described in "Optimizing File-Based Transaction Persistence" in Open Message
Queue Administration Guide.

In-Process Broker
Message Queue 4.4 Update 1 supports running a broker from within a Java client.
Such a broker, called an in-process or embedded broker, runs in the same JVM as the Java
client that creates and starts it. For more information, see "Embedding a Message
Queue Broker in a Java Client" in Open Message Queue Developer's Guide for Java Clients.

New Features in Message Queue 4.4
Message Queue 4.4 is a minor release that includes a number of feature enhancements
and bug fixes. This section describes the new features included in this release:

■ JMS Bridge Service

■ STOMP Bridge Service

■ Additional Enhancements

JMS Bridge Service
Because the JMS specification does not define a wire protocol for communication
between brokers and clients, each JMS provider (including Message Queue) has
defined and uses its own propriety protocol. This situation has led to
non-interoperability across JMS providers.

The JMS bridge service in Message Queue 4.4 closes this gap by enabling a Message
Queue broker to map its destinations to destinations in external JMS providers. This
mapping effectively allows the Message Queue broker to communicate with clients of
the external JMS provider.

The JMS bridge service supports mapping destinations in external JMS providers that:

■ Are JMS 1.1 compliant

■ Support JNDI administrative objects

■ Use connection factories of type javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory

New Features in Previous Message Queue 4 Releases

1-14 Open Message Queue 5.1.1 Release Notes

■ For transacted mapping, support the XA interfaces as a resource manager

Many open source and commercial JMS providers meet these requirements, which
makes the JMS bridge service an effective way to integrate Message Queue into an
existing messaging environment that employs other JMS providers.

For more information about the JMS bridge service see "Configuring and Managing
JMS Bridge Services" in Open Message Queue Administration Guide.

STOMP Bridge Service
As mentioned earlier, the JMS specification does not define a wire protocol for
communication between brokers and clients. The STOMP (Streaming Text Oriented
Messaging Protocol) open source project at
http://docs.codehaus.org/display/STOMP defines a simple wire protocol that
clients written in any language can use to communicate with any messaging provider
that supports the STOMP protocol.

Message Queue 4.4 provides support for the STOMP protocol through the STOMP
bridge service. This service enables a Message Queue broker communicate with
STOMP clients.

For more information about the STOMP bridge service see "Configuring and
Managing STOMP Bridge Services" in Open Message Queue Administration Guide.

Additional Enhancements
The following additional enhancements are also provided in Message Queue 4.4:

■ New Universal Message Service (UMS) Functions

■ IPS Package Support

■ Audit Logging Feature Reinstated

New Universal Message Service (UMS) Functions The UMS now provides functions that use
HTTP GET to offer several services:

■ getBrokerInfo: retrieves information about the broker.

■ getConfiguration: retrieves information about the UMS configuration.

■ debug: turns debug logging in the UMS server on and off.

■ ping: communicates with the broker to confirm that it is running.

For information about these new features, see "Query and utility functions using
HTTP GET" in http://mq.java.net/4.4-content/imqums/protocol.html.

For an overview of UMS, see Universal Message Service (UMS). For of the UMS API,
see http://mq.java.net/4.4-content/imqums/protocol.html. For
programming examples in several languages, see
http://mq.java.net/4.4-content/imqums/examples/README.html.

IPS Package Support Message Queue is now packaged for distribution using the open
source Image Packaging System (IPS), also known as the pkg(5) system. This
packaging method has been added in order for Message Queue to integrate with Sun
GlassFish Enterprise Server 2.1.1.

Audit Logging Feature Reinstated Message Queue 3.7 provided an audit logging feature
that was removed in Message Queue 4.0. This feature has been reinstated in Message
Queue 4.4. For information about this feature, see "Audit Logging with the Solaris
BSM Audit Log" in Open Message Queue Administration Guide.

New Features in Previous Message Queue 4 Releases

Release Notes 1-15

New Features in Message Queue 4.3
Message Queue 4.3 was a minor release that included a number of feature
enhancements and bug fixes. This section describes the new features included in this
release:

■ Universal Message Service (UMS)

■ AIX Platform Support

■ New Zip-Based Installer

■ Extended Platform Support

■ Additional Enhancements

Universal Message Service (UMS)
Message Queue 4.3 introduces a new universal messaging service (UMS) and
messaging API that provides access to Message Queue from any http-enabled device.
As a result, almost any application can communicate with any other application and
benefit from the reliability and guaranteed delivery of JMS messaging. In addition, the
UMS provides enhanced scalability for JMS messaging, allowing the number of
messaging clients to reach internet-scale proportions.

Architecture The basic UMS architecture is shown in the following figure:

Figure 1–1 UMS Architecture

The UMS, which runs in a web server, is language neutral and platform independent.
The UMS serves as a gateway between any non-JMS client application and a JMS
provider. It receives messages sent using the UMS API, transforms them into JMS
messages, and produces them as persistent messages to destinations in the JMS
provider by way of the provider's native protocol. Similarly, it retrieves messages from
destinations in the JMS provider in a transacted session using AUTO_
ACKNOWLEDGE mode, transforms them into text or SOAP messages, and sends the
messages to non-JMS clients as requested by the clients through the UMS API.

The simple, language-independent, protocol-based UMS API supports both
Web-based and non-Web-based applications, and can be used with both scripting and
programming languages. The API is offered in two styles: a simple messaging API that
uses a Representational State Transfer (REST)-style protocol, and an XML messaging
API that embeds the protocol in a SOAP message header. In both cases, however, the
API requires only a single http request to send or receive a message.

C Client

Java Client

.Net Client

Ajax Client

Message Queue

JMS Provider 2

JMS Provider 3

Python Client
Web Container

Non-JMS Clients

Messaging Service
JMS Providers

UMS
Protocol-based

UMS API
JMS Provider’s
Native Protocol

New Features in Previous Message Queue 4 Releases

1-16 Open Message Queue 5.1.1 Release Notes

The simplicity and flexibility of the UMS API means that AJAX, .NET, Python, C, Java,
and many other applications can send text message and/or SOAP (with attachment)
messages to JMS destinations or receive messages from JMS destinations. For example,
Python applications can communicate with .NET applications, iPhone can
communicate with Java applications, and so forth.

For Message Queue 4.3, the UMS supports only Message Queue as a JMS provider.

Additional Features The UMS serves as more than the simple gateway described above.
It supports stateful as well as stateless client sessions. If requested by the client, the
UMS will maintain session state for the client application across multiple service
requests. The UMS can use container-managed authentication, or be configured to
authenticate clients with the Message Queue broker, or both. The UMS also supports
transactions, enabling client applications to commit or roll back multiple service
requests as a single atomic unit.

Because the UMS can support a large number of clients on a single connection to the
Message Queue broker, it eases the load on the broker's connection services, allowing
for maximum scalability. In addition, UMS capacity can be increased by horizontal
scaling, allowing for internet-scale messaging loads.

On the client side, because of the simplicity of the protocol-based UMS API, no client
libraries are required. As a result, the API can be extended in the future to implement
additional JMS features without any need to upgrade client applications.

Using the UMS To use the UMS, you deploy the UMS into a web container that supports
Servlet 2.4 or later specifications, start the Message Queue broker, create the
appropriate destinations, and write a messaging application that uses the UMS API to
send or receive messages.

The UMS imqums.war file, contained in the Message Queue 4.3 distribution, is installed
in the following location, depending on platform:

You can rename the .war file as appropriate.

After you have deployed the imqums.war into a web container at localhost:port, you
can find UMS at:

http://localhost:port/imqums

Otherwise you can find UMS as follows:

■ For information on configuring the UMS, see
http://mq.java.net/4.4-content/imqums/config.html.

■ For of the UMS API, see
http://mq.java.net/4.4-content/imqums/protocol.html.

■ For programming examples in several languages, see
http://mq.java.net/4.4-content/imqums/examples/README.html.

Supported Web Containers UMS is currently supported on the following web containers:

■ Sun GlassFish Enterprise Server, Version 2.1 and Version 3 Prelude

■ Tomcat, Versions 5.5 and 6.0

AIX Platform Support
Message Queue 4.3 provides AIX platform packages and an Installer for installing
them).

The Message Queue AIX implementation supports the following software:

New Features in Previous Message Queue 4 Releases

Release Notes 1-17

■ AIX v 6.1 or higher (earlier versions of AIX are supported via the Unix/Java Only
bundle)

■ DB2 support

■ IBM XL C/C++ Compiler V9.0

■ JDK 1.5 or better

For installation instructions, see AIX Installation in Sun Java System Message Queue 4.3
Installation Guide.

On the AIX platform, Message Queue files are installed under a single Message Queue
home directory, IMQ_HOME. IMQ_HOME denotes the directory mqInstallHome/mq, where
mqInstallHome is the installation home directory you specify when installing the
product (by default, home-directory/MessageQueue).

The resulting Message Queue directory structure is the same as that for the Windows
platform (see the Windows section of "Distribution-Specific Locations of Message
Queue Data" in Open Message Queue Administration Guide.)

Message Queue support for the AIX platform includes support for the Message Queue
C-API. For instructions on building and compiling C applications on the AIX platform,
see XREF.

New Zip-Based Installer
Message Queue 4.3 introduces a new installer for Zip-based distributions, as opposed
to native package distributions. The installer is used to install the new Message Queue
.zip distributions for the AIX platform.

The new installer extracts Message Queue .zip files to any directory for which you
have write access (you do not need root privileges) and it also enables you to register
your Message Queue installation with Sun Connection.

To minimize the size of download bundles, the Java Runtime is no longer be included
in the zip-based distribution (most sites will already have it). As a result, the
installer command requires that a JDK or JRE be specified, either by using the JAVA_
HOME environment variable or by using the -j option on the command line, as follows:

$ installer -j JDK/JRE-path

where JDK/JRE-path is the path of the specified JDK or JRE.

Extended Platform Support
The following updated platform support will be certified for Message Queue 4.3:

■ Oracle 11g

■ Windows Server 2008

Additional Enhancements
The following additional enhancements are included in Message Queue 4.3:

■ New Directory Structure on Windows Platform

■ New Broker Properties

■ JMX Administration API Enhancements

■ Listing Durable Subscriptions for Wildcard Subscribers

New Features in Previous Message Queue 4 Releases

1-18 Open Message Queue 5.1.1 Release Notes

New Directory Structure on Windows Platform The installed directory structure for Message
Queue on the Windows platform has been modified from previous versions to match
that of the AIX platform. This directory structure will be adopted as well by the Solaris
and Linux platforms in the future, to facilitate multiple installations on single
computer and automatic update of Message Queue through Sun Connection, a
Sun-hosted service that helps you track, organize, and maintain Sun hardware and
software (see Installer Support for Sun Connection Registration).

New Broker Properties The following new properties are available for configuring a
broker:

 JMX Administration API Enhancements A new attribute and composite data keys have
been added to the JMX API as follows:

■ A NextMessageID attribute has been added to the Destination Monitor MBean to
provide the JMS message ID of the next message to be delivered to a consumer.

■ A NextMessageID key for composite date has been added to the Consumer
Manager Monitor MBean to provide the JMS message ID of the next message to be
delivered to the consumer.

■ A NumMsgsPending key for composite date has been added to the Consumer
Manager Monitor MBean to provide the number of messages that have been
dispatched to the consumer.

For more information see "Message Queue MBean Reference" in Open Message Queue
Developer's Guide for JMX Clients.

Listing Durable Subscriptions for Wildcard Subscribers The command for listing durable
subscriptions:

list dur [-d topicName]

has been enhanced to make specification of the topic name optional. If the topic is not
specified, the command lists all durable subscriptions for all topics (including those
with wildcard naming conventions)

New Features in Message Queue 4.2
Message Queue 4.2 was a minor release that included a number of new features, some
feature enhancements, and bug fixes. This section describes the new features in the 4.2
release and provides further references for your use:

■ Multiple Destinations for a Publisher or Subscriber

Table 1–5 Broker Routing and Delivery Properties

Property Type
Default
Value Description

imq.transaction.producer.maxNumMsgs Integer 1000 The maximum number of messages that a
producer can process in a single transaction. It
is recommended that the value be less than
5000 to prevent the exhausting of resources.

imq.transaction.consumer.maxNumMsgs Integer 100 The maximum number of messages that a
consumer can process in a single transaction. It
is recommended that the value be less than
1000 to prevent the exhausting of resources.

imq.persist.jdbc.connection.limit Integer 5 The maximum number of connections that can
be opened to the database.

New Features in Previous Message Queue 4 Releases

Release Notes 1-19

■ Schema Validation of XML Payload Messages

■ C-API Support for Distributed Transactions

■ Installer Support for Sun Connection Registration

■ Support for MySQL Database

■ Additional Enhancements

For information about features introduced in Message Queue 4.1 and 4.0, see New
Features in Message Queue 4.1 and New Features in Message Queue 4.0, respectively.

Multiple Destinations for a Publisher or Subscriber
With Message Queue 4.2, a publisher can publish messages to multiple topic
destinations and a subscriber can consume messages from multiple topic destinations.
This capability is achieved by using a topic destination name that includes wildcard
characters, representing multiple destinations. Using such symbolic names allows
administrators to create additional topic destinations, as needed, consistent with the
wildcard naming scheme. Publishers and subscribers automatically publish to and
consume from the added destinations. (Wildcard topic subscribers are more common
than publishers.)

The format of symbolic topic destination names and examples of their use is described
in "Supported Topic Destination Names" in Open Message Queue Administration Guide.

Schema Validation of XML Payload Messages
This feature, introduced in Message Queue 4.2, enables validation of the content of a
text (not object) XML message against an XML schema at the point the message is sent
to the broker. The location of the XML schema (XSD) is specified as a property of a
Message Queue destination. If no XSD location is specified, the DTD declaration
within the XML document is used to perform DTD validation. (XSD validation, which
includes data type and value range validation, is more rigorous than DTD validation.)

For information on the use of this feature, see "Schema Validation of XML Payload
Messages" in Open Message Queue Developer's Guide for Java Clients.

C-API Support for Distributed Transactions
According to the X/Open distributed transaction model, support for distributed
transactions relies upon a distributed transaction manager which tracks and manages
operations performed by one or more resource managers. With Message Queue 4.2,
the Message Queue C-API supports the XA interface (between a distributed
transaction manager and Message Queue as a XA-compliant resource manager),
allowing Message Queue C-API clients running in a distributed transaction processing
environment (such as BEA Tuxedo) to participate in distributed transactions.

This distributed transaction support consists of the following new C-API functions
(and new parameters and error codes) used to implement the XA interface
specification:

MQGetXAConnection()
MQCreateXASession()

If a C-client application is to be used in the context of a distributed transaction, then it
must obtain a connection by using MQGetXAConnection() and create a session for

Note: This feature does not apply to queue destinations.

New Features in Previous Message Queue 4 Releases

1-20 Open Message Queue 5.1.1 Release Notes

producing and consuming messages by using MQCreateXASession(). The start,
commit, and rollback, of any distributed transaction is managed through APIs
provided by the distributed transaction manager.

For details of using the distributed transaction functions, see "Working With
Distributed Transactions" in Open Message Queue Developer's Guide for C Clients.

Message Queue 4.2 provides programming examples based on the Tuxedo transaction
manager. For information on the use of these sample programs, see "Distributed
Transaction Sample Programs" in Open Message Queue Developer's Guide for C Clients.

Installer Support for Sun Connection Registration
The Message Queue installer has been enhanced to allow for registration of Message
Queue with Sun Connection, a Sun-hosted service that helps you track, organize, and
maintain Sun hardware and software.

As part of Message Queue installation, you can choose to register Message Queue with
Sun Connection. Information about the installed Message Queue, such as the release
version, host name, operating system, installation date, and other such basic
information is securely transmitted to the Sun Connection database. The Sun
Connection inventory service can help you organize your Sun hardware and software,
while the update service can inform you of the latest available security fixes,
recommended updates, and feature enhancements.

For details of registering Message Queue with Sun Connection, see Sun Java System
Message Queue 4.3 Installation Guide.

Support for MySQL Database
Message Queue 4.2 introduced support for MySQL database as a JDBC-based data
store. MySQL Cluster Edition can be used as a JDBC database for a standalone broker,
and MySQL Cluster Edition can be used as the highly-available shared data store
needed for an enhanced broker cluster. For information on configuring Message
Queue to use MySQL, see "Configuring a JDBC-Based Data Store" in Open Message
Queue Administration Guide and also "Enhanced Broker Cluster Properties" in Open
Message Queue Administration Guide.

Additional Enhancements
In addition to the features described above, Message Queue 4.2 included the following
enhancements:

■ Remotely Produced Message Metrics

Message Queue 4.2 introduced new destination metrics that can be useful in
monitoring destinations in a broker cluster. In a broker cluster, the messages stored
in a given destination on a given broker in the cluster, consist of messages
produced directly to the destination as well as messages sent to the destination
from remote brokers in the cluster. In analyzing message routing and delivery in a
broker cluster, it is sometimes helpful to know how many messages in a
destination are local (locally produced) and how many are remote (remotely
produced).

Note: The distributed transaction functionality is supported on
Solaris, Linux, and Windows platforms, however, to date it has only
been certified on the Solaris platform.

New Features in Previous Message Queue 4 Releases

Release Notes 1-21

Two new physical destination metric quantities are included in Message Queue
4.2:

■ Num messages remote, the current number of messages stored in memory and
persistent store that were produced to a remote broker in a cluster, except for
messages included in transactions.

■ Total Message bytes remote, the current total size in bytes of messages
stored in memory and persistent store that were produced to a remote broker
in a cluster, except for messages included in transactions.

These new metric quantities are available through the imqcmd list dst and
imqcmd query dst commands (see "Viewing Physical Destination Information" in
Open Message Queue Administration Guide) and through new JMX attributes (see
"Destination Monitor" in Open Message Queue Developer's Guide for JMX Clients).

■ Wildcard Producer and Wildcard Consumer Information

Information to support the use of wildcard characters in destination names (see
Multiple Destinations for a Publisher or Subscriber) is provided through new
monitoring data. For example, the number of wildcard producers or consumers
associated with a destination are available through the imqcmd query dst
command (see "Viewing Physical Destination Information" in Open Message Queue
Administration Guide) and through new JMX attributes (see "Destination Monitor"
in Open Message Queue Developer's Guide for JMX Clients). Also, wildcard
information is available through the ConsumerManager Monitor and
ProducerManager Monitor MBeans.

■ Support for DN Username Format for Client Authentication

Message Queue 4.2 introduced support for DN username format in client
connection authentication against an LDAP user repository. The support involves
the following new broker property (and value):

imq.user_repository.ldap.usrformat=dn

This property lets the broker authenticate a client user against an entry in an
LDAP user repository by extracting from the DN username format the value of the
attribute specified by the following property:

imq.user_repository.ldap.uidattr

The broker uses the value of the above attribute as the name of the user in access
control operations.

For example, if imq.user_repository.ldap.uidattr=udi and a client
authentication username is in the format
udi=mquser,ou=People,dc=red,dc=sun,dc=com, then "mquser" would be
extracted for performing access control.

■ JAAS Authentication Enhancement

Message Queue 4.2 introduced JAAS authentication by IP address as well as by
username.

New Features in Message Queue 4.1
Message Queue 4.1 was a minor release that included a number of new features, some
feature enhancements, and bug fixes. This section describes the new features in the 4.1
release and provides further references for your use:

■ High-Availability Broker Clusters

New Features in Previous Message Queue 4 Releases

1-22 Open Message Queue 5.1.1 Release Notes

■ JAAS Support

■ Persistent Data Store Format Change

■ Broker Environment Configuration

■ Java ES Monitoring Framework Support

■ Enhanced Transaction Management

■ Fixed Ports for C Client Connections

For information about features introduced in Message Queue 4.0, see New Features in
Message Queue 4.0.

High-Availability Broker Clusters
Message Queue 4.1 introduced a new, enhanced broker cluster. As compared to a
conventional broker cluster, which provides only messaging service availability (if a
broker fails, another broker is available to provide messaging service), the enhanced
broker cluster also provides data availability (if a broker fails, its persistent messages
and state data are available to another broker to use to take over message delivery).

The high-availability implementation introduced in Message Queue 4.1 uses a shared
JDBC-based data store: instead of each broker in a broker cluster having its own
persistent data store, all brokers in the cluster share the same JDBC-compliant
database. If a particular broker fails, another broker within the cluster takes over
message delivery for the failed broker. In doing so, the failover broker uses data and
state information in the shared data store. Messaging clients of the failed broker
reconnect to the failover broker, which provides uninterrupted messaging service.

The shared JDBC-based store used in the Message Queue 4.1 high-availability
implementation must itself be highly available. If you do not have a highly available
database or if uninterrupted message delivery is not important to you, you can
continue to use conventional clusters, which provide service availability without data
availability.

To configure a Message Queue 4.1 enhanced broker cluster, you specify the following
broker properties for each broker in the cluster:

■ Cluster membership properties, which specify that the broker is in an enhanced
broker cluster, the ID of the cluster, and the ID of the broker within the cluster.

■ Highly available database properties, which specify the persistent data model (JDBC),
the name of the database vendor, and vendor-specific configuration properties.

■ Failure detection and failover properties, which specify how broker failure is detected
and handled using a failover broker.

To use the enhanced broker cluster implementation, you must do the following:

1. Install a highly available database.

2. Install the JDBC driver .jar file.

3. Create the database schema for the highly available persistent data store.

4. Set high-availability properties for each broker in the cluster.

5. Start each broker in the cluster.

For a conceptual discussion of enhanced broker clusters and how they compare to
conventional clusters, see "Broker Clusters" in Open Message Queue Technical Overview.
For procedural and reference information about enhanced broker clusters, see

New Features in Previous Message Queue 4 Releases

Release Notes 1-23

"Configuring and Managing Broker Clusters" and "Cluster Configuration Properties"
in Open Message Queue Administration Guide.

If you have been using a highly available database with Message Queue 4.0 and want
to switch to an enhanced broker cluster, you can use the Database Manager utility
(imqdbmgr to convert to a shared persistent data store. Also see Broker Clusters for
more known issues and limitations.

JAAS Support
In addition to the file-based and LDAP-based built-in authentication mechanisms,
Message Queue 4.1 introduced support for the Java Authentication and Authorization
Service (JAAS), which allows you to plug an external authentication mechanism into
the broker to authenticate Message Queue clients.

For a description of the information that a broker makes available to a JAAS-compliant
authentication service and an explanation of how to configure the broker to use such a
service, see "Using JAAS-Based Authentication" in Open Message Queue Administration
Guide.

Persistent Data Store Format Change
Message Queue 4.1 changed the JDBC-based data store to support enhanced broker
clusters. For this reason the format of the JDBC—based data store is increased to
version 410. Format versions 350, 370, and 400 are automatically migrated to the 410
version.

Please note that the format of the file-based persistent data store remains at version
370 because no changes were made to it.

Broker Environment Configuration
The property IMQ_DEFAULT_EXT_JARS has been added to the Message Queue 4.1
environment configuration file, imqenv.conf. You can set this property to specify the
path names of external .jar files to be included in CLASSPATH when the broker starts up.
If you use this property to specify the location of external .jar files, you no longer need
to copy these files to the lib/ext directory. External .jar files can refer to JDBC drivers
or to JAAS login modules. The following sample poperty, specifies the location of
JDBC drivers.

IMQ_DEFAULT_EXT_JARS=/opt/SUNWhadb4/lib/hadbjdbc4.jar:/opt/SUNWjavadb/derby.jar

Java ES Monitoring Framework Support
Message Queue 4.1 introduced support for the Sun Java Enterprise System (Java ES)
Monitoring Framework, which allows Java ES components to be monitored using a
common graphical interface. This interface is implemented by a web-based console
called the Sun Java System Monitoring Console. Administrators can use the Console to
view performance statistics, reate rules for automatic monitoring, and acknowledge
alarms. If you are running Message Queue along with other Java ES components, you
might find it more convenient to use a single interface to manage all of them.

For information on using the Java ES monitoring framework to monitor Message
Queue, see XREF.

Enhanced Transaction Management
Previously, only transactions in a PREPARED state were allowed to be rolled back
administratively. That is, if a session that was part of a distributed transaction did not

New Features in Previous Message Queue 4 Releases

1-24 Open Message Queue 5.1.1 Release Notes

terminate gracefully, the transaction remained in a state that could not be cleaned up
by an administrator. In Message Queue 4.1, you can now use the Command utility
(imqcmd) to clean up (roll back) transactions that are in the following states: STARTED,
FAILED, INCOMPLETE, COMPLETE, and PREPARED.

To help you determine whether a particular transaction can be rolled back (especially
when it is not in a PREPARED state), the Command utility provides additional data as
part of theimqcmd query txn output: it provides the connection id for the connection
that started the transaction and specifies the time when the transaction was created.
Using this information, an administrator can decide whether the transaction needs to
be rolled back. In general, the administrator should avoid rolling back a transaction
prematurely.

Fixed Ports for C Client Connections
In Message Queue 4.1, C clients, like Java clients, can now connect to a fixed broker
port rather than to a port dynamically assigned by the broker's Port Mapper service.
Fixed port connections are useful if you're trying to get through a firewall or if you
need to bypass the Port Mapper service for some other reason.

To configure a fixed port connection you need to configure both the broker and the C
client run time (both ends of the connection). For example, if you want to connect your
client via ssljms to port 1756, you would do the following:

■ On the client side, set the following properties:

MQ_SERVICE_PORT_PROPERTY=1756

MQ_CONNECTION_TYPE_PROPERTY=SSL

■ On the broker side, set the imq.serviceName.protocolType.port property as follows:

imq.ssljms.tls.port=1756

New Features in Message Queue 4.0
Message Queue 4.0 was a minor release limited to supporting Application Server 9 PE.
It included a few new features, some feature enhancements, and bug fixes. This section
includes a description of new features in this release:

■ Support for JMX Administration API

■ Client Runtime Logging

■ Connection Event Notification API

■ Broker Administration Enhancements

■ Displaying Information About a JDBC-Based Data Store

■ JDBC Provider Support

■ Persistent Data Store Format Changes

■ Additional Message Properties

■ SSL Support

Note: The MQ_SERVICE_PORT_PROPERTY connection property has
been backported to Message Queue 3.7 Update 2.

New Features in Previous Message Queue 4 Releases

Release Notes 1-25

Support for JMX Administration API
A new API was added in Message Queue 4.0 for configuring and monitoring Message
Queue brokers in conformance with the Java Management Extensions (JMX)
specification. Using this API, you can configure and monitor broker functions
programmatically from within a Java application. In earlier versions of Message
Queue, these functions were accessible only from the command line administration
utilities or the Administration Console.

For more information see the Open Message Queue Developer's Guide for JMX Clients.

Client Runtime Logging
Message Queue 4.0 introduced support for client runtime logging of connection and
session-related events.

Fore information regarding client runtime logging and how to configure it, see the
Java Dev Guide pag 137.

Connection Event Notification API
Message Queue 4.0 introduced an event notification API that allows the client runtime
to inform an application about changes in connection state. Connection event
notifications allow a Message Queue client to listen for closure and re-connection
events and to take appropriate action based on the notification type and the
connection state. For example, when a failover occurs and the client is reconnected to
another broker, an application might want to clean up its transaction state and proceed
with a new transaction.

For information about connection events and how to create an event listener, see the
Java Dev Guide, page 96.

Broker Administration Enhancements
In Message Queue 4.0, a new subcommand and several command options were added
to the Command utility (imqcmd) to allow administrators to quiesce a broker, to
shutdown a broker after a specified interval, to destroy a connection, or to set java
system properties (for example, connection related properties).

■ Quiescing a broker moves it into a quiet state, which allows messages to be
drained before the broker is shut down or restarted. No new connections can be
created to a broker that is being quiesced. To quiesce the broker, enter a command
like the following.

imqcmd quiesce bkr -b Wolfgang:1756

■ To shut down the broker after a specified interval, enter a command like the
following. (The time interval specifies the number of seconds to wait before the
broker is shut down.)

imqcmd shutdown bkr -b Hastings:1066 -time 90

If you specify a time interval, the broker will log a message indicating when
shutdown will occur. For example,

Caution: One of the minor but potentially disruptive changes
introduced with version 4.0 was the deprecation of the
command-line option to specify a password. Henceforth, you must
store all passwords in a file as described in Deprecated Password
Option, or enter them when prompted.

New Features in Previous Message Queue 4 Releases

1-26 Open Message Queue 5.1.1 Release Notes

Shutting down the broker in 29 seconds (29996 milliseconds)

While the broker is waiting to shut down, its behavior is affected in the following
ways.

■ Administrative jms connections will continue to be accepted.

■ No new jms connections will be accepted.

■ Existing jms connections will continue to work.

■ The broker will not be able to take over for any other broker in an enhanced
broker cluster.

■ The imqcmd utility will not block, it will send the request to shut down to the
broker and return right away.

■ To destroy a connection, enter a command like the following.

imqcmd destroy cxn -n 2691475382197166336

Use the command imqcmd list cxn or imqcmd query cxn to obtain the connection
ID.

■ To set a system property using imqcmd, use the new -D option. This is useful for
setting or overriding JMS connection factory properties or connection-related java
system properties. For example:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true
imqcmd list svc -secure -Djavax.net.ssl.trustStore=/tmp/mytruststore
 -Djavax.net.ssl.trustStorePassword=mytrustword

For complete information about the syntax of the imqcmd command, see "Command
Line Reference" in Open Message Queue Administration Guide.

Displaying Information About a JDBC-Based Data Store
In Message Queue 4.0 a new query subcommand was added to the Database Manager
utility, imqdbmgr. This subcommand is used to display information about a
JDBC-based data store, including the database version, the database user, and whether
the database tables have been created.

The following is an example of the information displayed by the command.

imqdbmgr query

[04/Oct/2005:15:30:20 PDT] Using plugged-in persistent store:
 version=400
 brokerid=Mozart1756
 database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb
 database user=scott
Running in standalone mode.
Database tables have already been created.

JDBC Provider Support
In Message Queue 4.0, Apache Derby Version 10.1.1 is now supported as a JDBC-based
data store provider.

Persistent Data Store Format Changes
Message Queue 4.0 introduced changes to the JDBC-based data store for optimization
and to support future enhancements. For this reason the format of the JDBC-based

New Features in Previous Message Queue 4 Releases

Release Notes 1-27

data store was increased to version 400. Note that in Message Queue 4.0, the file-based
data store version remains 370 because no changes were made to it.

Additional Message Properties
Message Queue 4.0 added two new properties which are set on all messages that are
placed in the dead message queue.

■ JMS_SUN_DMQ_PRODUCING_BROKER indicates the broker where the message was
produced.

■ JMS_SUN_DMQ_DEAD_BROKER indicates the broker who marked the message dead.

SSL Support
Starting with Message Queue 4.0, the default value for the client connection factory
property imqSSLIsHostTrusted is false. If your application depends on the prior
default value of true, you need to reconfigure and to set the property explicitly to
true.

You might choose to trust the host when the broker is configured to use self-signed
certificates. In this case, in addition to specifying that the connection should use an
SSL-based connection service (using the imqConnectionType property), you should set
the imqSSLIsHostTrusted property to true.

For example, to run client applications securely when the broker uses self-signed
certificates, use a command like the following.

java -DimqConnectionType=TLS
 -DimqSSLIsHostTrusted=true ClientAppName

To use the Command utility (imqcmd) securely when the broker uses self-signed
certificates, use a command like the following (for listing connector services).

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

New Features in Previous Message Queue 4 Releases

1-28 Open Message Queue 5.1.1 Release Notes

	Preface
	1 Release Notes
	Release Notes Revision History
	About Message Queue 5.1.1
	Bugs Fixed in Message Queue 5.1.1
	About Message Queue 5.1
	Message Queue 5.1 Supported Platforms and Components
	Platform Support
	System Virtualization Support
	Optional Support Components

	New Features in Message Queue 5.1
	Bugs Fixed in Message Queue 5.1
	Installation
	Compatibility Considerations
	Features to be Deprecated in a Future Release
	Known Issues and Limitations
	Deprecated Password Option
	Administration/Configuration Issues
	Broker Issues
	Broker Clusters
	SOAP Support

	Redistributable Files
	Additional Resources
	New Features in Previous Message Queue 5.0
	Support for JMS 2.0 Features and Enhancements
	Additional Message Queue 5.0 Enhancements

	New Features in Previous Message Queue 4 Releases
	New Features in Message Queue 4.5
	New Features in Message Queue 4.4.2
	New Features in Message Queue 4.4 Update 1
	New Installation Program
	Transaction Log Support for Clusters
	In-Process Broker

	New Features in Message Queue 4.4
	JMS Bridge Service
	STOMP Bridge Service
	Additional Enhancements

	New Features in Message Queue 4.3
	Universal Message Service (UMS)
	AIX Platform Support
	New Zip-Based Installer
	Extended Platform Support
	Additional Enhancements

	New Features in Message Queue 4.2
	Multiple Destinations for a Publisher or Subscriber
	Schema Validation of XML Payload Messages
	C-API Support for Distributed Transactions
	Installer Support for Sun Connection Registration
	Support for MySQL Database
	Additional Enhancements

	New Features in Message Queue 4.1
	High-Availability Broker Clusters
	JAAS Support
	Persistent Data Store Format Change
	Broker Environment Configuration
	Java ES Monitoring Framework Support
	Enhanced Transaction Management
	Fixed Ports for C Client Connections

	New Features in Message Queue 4.0
	Support for JMX Administration API
	Client Runtime Logging
	Connection Event Notification API
	Broker Administration Enhancements
	Displaying Information About a JDBC-Based Data Store
	JDBC Provider Support
	Persistent Data Store Format Changes
	Additional Message Properties
	SSL Support

