

 Copyright © 2016, Oracle Corporation. All Rights Reserved 1

Java EE Survey Results and Java EE 8

December, 2016

Java EE Development Team, Oracle

 Copyright © 2016, Oracle Corporation. All Rights Reserved 2

Table of Contents

Abstract/Summary ... 3

Survey Background .. 3

Ranking of Technologies by Importance .. 5

Conclusions ... 7

Detailed Survey Results ... 9

 Copyright © 2016, Oracle Corporation. All Rights Reserved 3

Abstract/Summary

This document describes the results of the Java EE survey conducted in September-October

2016, concerning future enhancements to Java EE. In particular it describes the community

ranking of the importance of future Java EE component technologies. The document also

summarizes the conclusions for our Java EE 8 proposal, based on survey results and additional

review of implementation considerations.

Survey Background

We conducted this survey in the context of its revised Java EE roadmap presented at JavaOne

2016. For more detail on this roadmap, watch Anil Gaur’s section of the Java Keynote at

JavaOne 2016. This survey was conducted to provide input and feedback on the component

technologies included in the proposed roadmap.

The survey was opened on Friday Sept. 16, 2016. The survey was open to all users who wished

to participate. The total number of surveys completed and submitted was 1693. The following

graphics illustrate how survey responses were distributed across global geographic regions.

Geographic location information is based solely on IP address of the computer used to complete

the survey. As such, location data are only approximate.

Survey worldwide geographic coverage:

Survey geographic response detail for European region:

https://www.youtube.com/watch?v=ZqfjW-RQPOs
https://www.youtube.com/watch?v=ZqfjW-RQPOs

 Copyright © 2016, Oracle Corporation. All Rights Reserved 4

Survey geographic response detail for North American region:

 Copyright © 2016, Oracle Corporation. All Rights Reserved 5

Ranking of Technologies by Importance

The survey consisted of 2 Demographic questions and 21 questions about proposed Java EE

component technologies. The component technology questions asked respondents to rate the

importance of the technology by selecting from the following: “1=Not, Important”; 2, 3; 4;

“5=Very Important” or “Not sure.”

For each of the 21 component technologies, the average importance of the technology was

computed by taking the average of all responses. If a response was “Not Sure” that response

was not included in the average ranking. Detailed response data are provided at the end of this

document, along with the text of each question.

Ranking Based on Importance from All Completed Respondents

The ranking of technologies, based on average importance, is given below:

Note that no technology averaged an unfavorable importance rating of below 3 in this survey.

4
.5

6

4
.3

9

4
.2

4

4
.1

7

4
.1

5

4
.1

0

4
.0

7

3
.9

7

3
.8

9

3
.8

5

3
.8

5

3
.8

3

3
.8

0

3
.7

8

3
.5

0

3
.4

9

3
.3

8

3
.3

1

3
.3

0

3
.3

0

3
.1

8

3

4

5

IM
P

O
R

TA
N

C
E

--
N

O
T

IM
P

O
R

TA
N

T
1

 T
O

 V
ER

Y
IM

P
O

R
TA

N
T

5

RANKING OF COMPONENT TECHNOLOGIES
BY IMPORTANCE

 Copyright © 2016, Oracle Corporation. All Rights Reserved 6

Ranking of Technologies Based on Reported Experience

The ranking of technologies varies somewhat based on reported experience using Java EE or

microservices technology, but not in a significant way that would alter our conclusions from the

survey.

Rank order, by reported years of experience using Java EE is given below:

None (n=34) 0-2 Years (n=253) 2-8 Years (n=681)
More than 8 years

(n=725)

REST Services REST Services REST Services REST Services

HTTP/2 HTTP/2 HTTP/2 HTTP/2

Eventing OAuth and OpenID Configuration OAuth and OpenID

OAuth and OpenID Eventing JSON-B Eventing

Modularity Configuration Oauth and OpenID Configuration

JSON-B JSON-B Eventing Secret Management

Configuration Secret Management Secret Management JSON-B

Secret Management Reactive Style Reactive Style Reactive Style

Management API Service Health JCache Service Health

Multi-tenancy JCache JSON-P Circuit Breakers

Eventual Consistency Modularity Circuit Breakers Modularity

JSON-P Eventual Consistency Eventual Consistency JCache

Reactive Style Circuit Breakers Service Health Eventual Consistency

Service Health JSON-P Modularity JSON-P

State Management NoSQL Support NoSQL Support State Management

JCache State Management State Management NoSQL Support

NoSQL Support Deployment Grouping Multi-tenancy Multi-tenancy

Deployment Grouping Multi-tenancy Management API JMS

Circuit Breakers MVC API JMS Deployment Grouping

MVC API Management API MVC API Management API

JMS JMS Deployment Grouping MVC API

Table 1 Rank order, based on reported years of experience using Java EE

 Copyright © 2016, Oracle Corporation. All Rights Reserved 7

Rank order, by reported years of Microservices Architecture Experience is given below:

None, No plans to
start (n=350)

None, plan to
start (n=495)

0-2 Years
(n=620)

2-5 Years
(n=194)

More than 5 years
(n=34)

HTTP/2 REST Services REST Services REST Services REST Services

REST Services HTTP/2 HTTP/2 HTTP/2 HTTP/2

Application
Configuration

OAuth and
OpenID

OAuth and
OpenID

Eventing Eventing

OAuth and OpenID Eventing
Application

Configuration
OAuth and
OpenID

OAuth and OpenID

JSON-B JSON-B Eventing Reactive Style Reactive Style

JCache
Application

Configuration
Secret

Management
JSON-B

Application
Configuration

Secret
Management

Secret
Management

JSON-B
Application

Configuration
Service Health

JSON-P Reactive Style Reactive Style
Secret

Management
Secret Management

Eventing Modularity Service Health Circuit Breakers JSON-P

Modularity
Eventual

Consistency
Circuit Breakers Service Health

Eventual
Consistency

Service Health Circuit Breakers
Eventual

Consistency
Modularity JSON-B

Reactive Style JCache JCache JCache Modularity

Circuit Breakers JSON-P Modularity
Eventual

Consistency
Circuit Breakers

State Management Service Health JSON-P JSON-P State Management

JMS NoSQL Support NoSQL Support NoSQL Support NoSQL Support

MVC API
State

Management
State

Management
State

Management
JCache

Eventual
Consistency

Deployment
Grouping

Multi-tenancy JMS JMS

Multi-tenancy Multi-tenancy Management API
Deployment
Grouping

Multi-tenancy

Deployment
Grouping

Management API JMS Multi-tenancy Management API

Management API JMS
Deployment
Grouping

Management API
Deployment
Grouping

NoSQL Support MVC API MVC API MVC API MVC API

Table 2 Rank order, by reported years of Microservices Architecture Experience

Conclusions

We reviewed the Java EE 8 proposal based on these survey results, and additional review of

implementation considerations. We have concluded that:

 Copyright © 2016, Oracle Corporation. All Rights Reserved 8

 REST (JAX-RS 2.1) and HTTP/2 (Servlet 4.0) have been voted as the two most important

technologies surveyed, and together with JSON-B represent three of the top six technologies. Much

of the new API work in these technologies for Java EE 8 is already complete. There is significant

value in delivering Java EE 8 with these technologies, and the related JSON-P updates, as soon as

possible.

 CDI 2.0, Bean Validation 2.0 and JSF 2.3 were not directly surveyed, but significant progress has

been made on these technologies and they will be included in Java EE 8.

 We considered accelerating Java EE standards for OAuth and OpenID Connect based on survey

feedback. This could not be accomplished in the Java EE 8 timeframe, but we’ll continue to pursue

Security 1.0 for Java EE 8.

 At JavaOne, we had proposed to add Configuration and Health Checking to Java EE 8, and these

technologies rank reasonably high in survey results. However, after additional review we believe

the scope of this work would delay overall Java EE 8 delivery. We have concluded it is best to

defer inclusion of these technologies in Java EE in order to complete Java EE 8 as soon as

possible.

 Management, JMS, and MVC ranked low in survey results, and this ranking supports our proposal

to withdraw new APIs in these areas from Java EE 8. We have withdrawn the JSRs for

Management 2.0 (JSR 373), and JMS 2.1 (JSR 368), and are investigating a possible transfer of

MVC to another community member or organization in order to complete JSR 371 as a stand-alone

component.

We will revise the Java EE 8 proposal consistent with these findings. The table below summarizes

Oracle's original and revised Java EE 8 proposals, focusing on areas of new API development:

Original and Revised Java EE 8 Proposals

 Copyright © 2016, Oracle Corporation. All Rights Reserved 9

Detailed Survey Results

Survey Experience Questions
1. How much experience do you have developing with Java EE?

(None; 0-2 years; 2-8 years; more than 8 years)

2. How much experience do you have developing microservices?

(None, no plans; None, but planning w/in next year or two; 0-2 years; 2-5 years; more

than 5 years)

0

100

200

300

400

500

600

700

800

None 0-2 years 2-8 years More than 8 years

R
es

p
o

n
ce

s

(1) Reported Java EE Experience

0

100

200

300

400

500

600

700

None, Not
planning

None, plan to
start

0-2 years 2-5 years More than 5
years

R
es

p
o

n
se

s

(2) Reported MSA Experience

 Copyright © 2016, Oracle Corporation. All Rights Reserved 10

Technology Questions

Programming Model

For many years, Java EE technology has been at the heart of enterprise application

development. Recently, technologies associated with the cloud, such as containerization,

microservices, REST, pay-per-use computing and continuous delivery have become more

relevant. Enterprises have shifted from using application servers and their associated

deployment artifacts to newer models that take advantage of the strengths of the cloud.

The following questions ask for your feedback on various changes under consideration for Java

EE.

3. Reactive Style

While synchronous APIs are still used for the vast majority of applications running on JVMs,

asynchronous, non-blocking programming models are gaining popularity, especially when

developing in a microservice style architecture, where most, if not all, inter-service calls are

remote by definition. In such scenarios, blocking calls can be very detrimental to overall

performance, resource utilization, and scalability. Recent Java SE improvements (e.g.

CompletableFuture , the new Flow API) enable a more Reactive approach.

How important is Reactive programming style support for the next generation of cloud and

microservices applications?

Rank across all responses: 8 / 21

4. Eventing

Many cloud applications are moving from a synchronous invocation model to an asynchronous

event-driven model. Key Java EE APIs could support this model for interacting with cloud

services. A common eventing system would simplify the implementation of such services.

How important is Eventing support for the next generation of cloud

and microservices applications?

647 483 267 107 71 118

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(3) Reactive Style

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 11

Rank across all responses: 5 / 21

5. REST Services

The current practice of cloud development in Java is largely based on REST and asynchrony.

For Java developers, that means using the standard JAX-RS API. Suggested enhancements

coming to the next version of JAX-RS include: a reactive client API, non-blocking I/O support,

server-sent events and better CDI integration.

How important are the new features proposed for JAX-RS, for the next generation of cloud and

microservices applications?

NOTE: due to an error, this question asked for importance between “0-Not important” to “4-Very

Important”. The responses have been normalized for consistency with the other questions that

rank from “1-Not Important” to “5-Very Important”

Rank across all responses: 1 / 21

6. Eventual Consistency

Application development style is changing. Monolithic applications are evolving to have many

smaller minimal function microservices that can be developed and managed independently.

Each microservice is typically organized around business capabilities and may have its own

datastore.

The programming model for eventual consistency across microservices is becoming an

769 508 221 75 49 71

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(4) Eventing

5 - Very Important 4 3 2 1 - Not Important Not Sure

1171 316 97 372844

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(5) REST Services

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 12

important problem area. In this context eventual consistency may allow for microservices to

observe other service's objects and state. Changes to the observed object would result in

notifications to the observers. In some cases these notifications could automatically be batched.

The proposal would aim to minimize the code both the observer and observable would need to

develop in order to participate in eventual consistency for the microservice's targeted objects or

state.

How important is eventual consistency support for the next generation of cloud and

microservices applications?

Rank across all responses: 13 / 21

7. HTTP/2

The HTTP/2 protocol enables a more efficient use of network resources and a reduced

perception of latency by introducing header field compression and allowing multiple concurrent

exchanges on the same connection. It also introduces unsolicited push of representations from

servers to clients. On the client-side, HTTP/2 is now supported by all modern browsers and

Java SE 9 plans to introduce a client-side HTTP/2 API. The Servlet 4 API plans to introduce

server-side HTTP/2 support.

How important is HTTP/2 for the next generation of cloud and microservices applications?

514 468 360 127 69 155

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(6) Eventual Consistency

5 - Very Important 4 3 2 1 - Not Important Not Sure

1037 330 203 532644

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(7) HTTP/2

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 13

Rank across all responses: 2 / 21

8. JSON-P

New features in the JSON-P 1.1 API include support for new standards (JSON Pointer, JSON

Patch and JSON Merge Patch), inclusion of JSON Collectors for the Stream API and other

enhancements.

How important are the new features proposed in JSON-P for the next generation of cloud and

microservices applications?

Rank across all responses: 14 / 21

9. JSON-B

To complete the support for JSON in the platform, Java EE needs an API to bind JSON

documents to Java objects. This work is a new API (JSON-B), introduced in the proposed Java

EE 8 release (JSR-367).

How important is JSON-B support for the next generation of cloud and microservices

applications?

Rank across all responses: 6 / 21

576 367 359 157 81 153

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(8) JSON-P

5 - Very Important 4 3 2 1 - Not Important Not Sure

781 394 257 89 64 108

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(9) JSON-B

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 14

NoSQL

10. NoSQL Support

Java EE has traditionally focused on standardization of APIs that access relational databases.

Many applications are starting to choose NoSQL databases to store some or all of their

persistent data. The databases may be used as replacements or additions to standard RDBMS

storage. There are diverse categories of NoSQL providers. There is no standard APIs available

for developers. There may be value in providing common abstractions for CRUD operations and

additional support for the most common flavors of NoSQL database across categories (e.g.

Key/Value, Document, Column, Graph). There also may be value in a simplified querying

mechanism and an option for direct access to vendor specific APIs for applications that needs

that unique functionality provided by specific vendors. Developers who stick to the standard

APIs will be able to migrate their applications without any code changes to another vendor

within the same category of NoSQL database (e.g. Key/Value to Key/Value).

How important is standardizing NoSQL database support for the next generation of cloud and

microservices applications?

Rank across all responses: 15 / 21

Application Configuration

11. Configuration API

In a scenario where applications consist of services, some of which may be deployed to a cloud

provider, Developers and DevOps engineers face many challenges related to managing

application configuration:

 How to deploy an application in different environments without cracking its package?

 How to apply configuration for all deployed instances of an application without any

redeployment?

 How an application can be notified if some of configuration properties are changed?

A configuration standard would define a unified configuration access API that would solve such

problems. That standard would provide the ability to create one or more configurations that are

independent of, and decoupled from the applications that use them. This standard may also

include configuration file format, configuration layering, integration with different cloud providers

489 373 371 208 171 75

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(10) NoSQL Support

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 15

and other features that simplify applications’ configuration management in the Cloud.

Should we standardize a Java EE application configuration API?

Rank across all responses: 4 / 21

Resilience

12. Circuit Breaker

In the Cloud, failure of application instances and services are inevitable. Applications need to be

written to tolerate such failures, and not create cascading failures. A "circuit breaker" is a

pattern which can be used to isolate and manage such failures. Key Java EE APIs could be

updated to include support for circuit breakers, and in general provide better resiliency for

network and service failures.

How important is "circuit breaker" support for the next generation of cloud and microservices

applications?

Rank across all responses: 10 / 21

13. Service Health

824 426 241 80 51 71

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(11) Application Configuration

5 - Very Important 4 3 2 1 - Not Important Not Sure

559 471 354 128 60 121

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(12) Circuit Breakers

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 16

Cloud environments typically host large number of services; many of which are often inter-

dependent. When problems surface, it is critical to quickly identify potential areas of failure to

help fix the problem. Due to the scale, specific tools are often used to quickly narrow down the

problem area.

Problems can be of various types, ranging from total failures, performance bottlenecks or other

subtle issues which may be transient. Failures may also cascade to dependent services making

the underlying cause hard to diagnose. Cloud platforms typically provide an Up/Down health

check that only provides minimum information. In order for tools to provide an insight into

underlying issues, a standards-based health check interface will be helpful. With such interface,

service instances would publish their health information in a standard form so that a health

monitoring system/service will be able to consume and analyze it uniformly.

Should Java EE introduce a mechanism to communicate the health of the cloud application to

the cloud infrastructure?

Rank across all responses: 9 / 21

14. State Management

Current trends talk about building 'stateless’ applications and services, but the need to store

some state exists nonetheless. This is obvious when building microservices, where each service

must truly own its state. To be successful, many microservices need a scalable, fault tolerant

state management solution.

Should Java EE investigate standards for state management?

606 492 336 121 67 71

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(13) Service Health

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 17

Rank across all responses: 16 / 21

Packaging

15. Grouping

Applications developed using a microservices architecture approach are composed of multiple

services. While these services should be isolated, those same services may have some

dependence relationships with other services to function properly. Java EE could define a

packaging format that allows such a collection of services to be grouped together while

specifying the dependencies and relationships between them, allowing convenient deployment

and management of a group of services. This would be in addition to deployment and

management of individual applications or services.

Should Java EE 9 investigate how to package a set of microservices together?

Rank across all responses: 20 / 21

16. Modularity, Embeddability & Just Enough Runtime

Many cloud applications are packaged and deployed as a stand-alone application executing in a

Docker-like container. Java SE 9 modularity would allow us to deliver Java EE components as

Java SE modules that could be used to create an application-specific runtime containing only

384 433 419 184 129 144

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(14) State Management

5 - Very Important 4 3 2 1 - Not Important Not Sure

344 384 411 225 190 139

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(15) Deployment Grouping

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 18

the modules needed by that single application. The Java EE runtime components could provide

an "embedded" API allowing the user's application to have full control over the initialization and

configuration of these components.

Should Java EE 9 investigate how to modularize EE Containers?

Rank across all responses: 12 / 21

17. Multi-tenancy

Cloud applications often serve the needs of multiple "tenants". Sometimes an application

instance will be dedicated to a single tenant, and sometimes a single application instance will

serve multiple tenants to better optimize resources. We could define how a Java EE container

would support multiple tenants, and how an application would be configured for different tenants

and would discover which tenant it is serving.

Should Java EE allow support for multi-tenant applications which could provide improved server

density?

Rank across all responses: 17 / 21

Security

18. OAuth and Open ID Connect

582 492 287 133 99 100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(16) Modularity

5 - Very Important 4 3 2 1 - Not Important Not Sure

377 390 377 189 188 172

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(17) Multi-tenancy

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 19

OAuth and OpenID are seeing rapid adoption in cloud environments for authentication and

authorization. We could enhance key Java EE APIs such as JAX-RS to better handle these

technologies.

How important is OAuth and OpenID for the next generation of cloud and microservices

applications?

Rank across all responses: 3 / 21

19. Secrets Management

Cloud applications often need to access other services that require authentication, or require

authentication of users of the application. Authentication is based on secrets, so applications

need a way to store these secrets securely while allowing administrators to manage the

secrets. We could define a secret management facility suitable for a cloud environment.

How important is secret management for the next generation of cloud and microservices

applications?

Rank across all responses: 7 / 21

Miscellaneous

20. MVC

922 384 205 90 46 46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(18) OAuth and Open ID Connect

5 - Very Important 4 3 2 1 - Not Important Not Sure

725 459 284 91 49 85

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(19) Secrets Management

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 20

When we first proposed Java EE 8, we got feedback that an action based web UI MVC

framework standard would be a good addition to Java EE. At this point it seems that most new

applications are using JavaScript based UI frameworks. We're now questioning whether it is

still important to complete the MVC API (JSR 371).

How important is MVC API for the next generation of cloud and microservices applications?

Rank across all responses: 21 / 21

21. Server Management API

Java EE includes an EJB-based management API. We proposed converting this API to a

REST-based API in JSR 373, with little change in functionality. While a standard management

API for Java EE applications in the cloud might be useful, as proposed, JSR 373 was not

evolving to provide this functionality.

How important is the Management API, as proposed in JSR 373, for the next generation of

cloud and microservices applications?

Rank across all responses: 18 / 21

22. JMS

505 251 236 244 361 94

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(20) MVC

5 - Very Important 4 3 2 1 - Not Important Not Sure

291 367 417 225 142 251

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(21) Server Management API

5 - Very Important 4 3 2 1 - Not Important Not Sure

 Copyright © 2016, Oracle Corporation. All Rights Reserved 21

JMS 2.0 introduced significant simplifications for Java EE 7. While further improvements are

always possible, JMS is a relatively mature technology that does not appear frequently in cloud

style applications.

How important is the continued evolution of the JMS API for next generation Java EE

applications?

Rank across all responses: 19 / 21

23. JCache

JCache 1.0 provides often-requested pluggable caching mechanism for Java applications. We

could integrate JCache with the Java EE platform.

How important is JCache for next generation Java EE applications?

Rank across all responses: 11 / 21

390 335 370 260 194 144

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(22) JMS

5 - Very Important 4 3 2 1 - Not Important Not Sure

610 435 302 134 92 120

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(23) JCache

5 - Very Important 4 3 2 1 - Not Important Not Sure

