
Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Enterprise	Java	for	the	Cloud	

Rajiv	Mordani	
Josh	Dorr	
Dhiraj	Mutreja	
September,	2016	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direcMon.	It	is	intended	for	
informaMon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcMonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Mming	of	any	features	or	
funcMonality	described	for	Oracle’s	products	remains	at	the	sole	discreMon	of	Oracle.	

2	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Agenda	
Overview	

Programming	Model	

State	

ConfiguraMon	

MulM-Tenancy	

Security	

Packaging	and	OrchestraMon	

Summary	

1	

2	

3	

4	

5	

3	

6	

7	

8	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

ApplicaMon	Development	is	Changing	

4	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 5	

Java	EE	ApplicaMon	

medrec.ear	

physician.ear	

chat.war	

•  App	is	three	large	archives	
•  Dependencies	are	Mghtly	coupled	
•  Cannot	scale	individual	components	
•  Cannot	upgrade	individual	components	

Admin	
Servlet	

Browser	

PaMent	
Servlet	

Physician	
Servlet	 Chat	StaMsMcs	

PaMent	
EJB	

NoMfica
Mon	

Physician	
EJB	

Record	
EJB	

DataImport	

Exploded	
	

Archives	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Rapid	Changes	Over	Past	Few	Years	

6	

Microservices	
Apps	divided	into	many	small	pieces	

Distributed	Compu:ng	
Many	data	centers,	AZs,	regions,	etc.	

New	Technology	Trends	
Docker,	Cloud,	DevOps,	etc.	

Driven	by	increasing	business	needs	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

1.  Codebase	
–  One	codebase	tracked	in	revision	control,	many	
deploys	

2.  Dependencies	
–  Explicitly	declare	and	isolate	dependencies	

3.  ConfiguraMon	
–  Store	configuraMon	in	the	environment	

4.  Backing	services	
–  Treat	backing	services	as	a]ached	resources	

5.  Build,	release,	run	
–  Strictly	separate	build	and	run	stages	

6.  Processes	
–  Execute	the	app	as	one	or	more	stateless	
processes	

7.  Port	binding	
–  Export	services	via	port	binding	

8.  Concurrency	
–  Scale	out	via	the	process	model	

9.  Disposability	
–  Maximize	robustness	with	fast	startup	and	graceful	

shutdown	

10.  Dev/prod	parity	
–  Keep	development,	staging,	and	producMon	as	similar	

as	possible	

11.  Logs	
–  Treat	logs	as	event	streams	

12.  Admin	processes	
–  Run	admin/management	tasks	as	one-off	processes	

	

7	

The	Twelve	Factors	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Cloud	Has	Become	the	Plaeorm	

8	

Cloud	

Consume	Applica0on	Building	Blocks	as	a	Service	

Caching	 Messaging	 Logging	 ConfiguraMon	 Consensus	

Persistence	 InjecMon	 State	 Monitoring	 Management	

Naming	 Deployment	 IdenMty	 Access	 Scaling	

ApplicaMon	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

It’s	Confusing!	
•  Java	EE	has	provided	the	standard	
infrastructure	for	building	enterprise	
applicaMons	

• With	the	shih	to	cloud	the	type	of	
applicaMons	and	the	requirements	for	these	
applicaMons	have	changed	

• ApplicaMons	are	becoming	more	
Microservice	oriented	

•  Java	EE	9	provides	an	opportunity	to	create	
a	standard	for	applicaMons	deployed	to	the	
cloud	to	simplify	development	and	
maximize	portability	

9	

Enter	Java	EE	9	

Too	many	choices....	
Which	components?	
Overall	architecture?	
Standards?	
Vendor	commitment?	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Java	EE	ApplicaMon	as	Independent	Services	

10	

Config	

EvenMng	Persistence(KV)	API	Catalog	 Logging/
Telemetry	

State	

Persistence	
(RDBMS)	

Cloud	
PlaKorm	Services	

Java	EE									
Service	APIs	Security	 Data	Change	

NoMficaMon	

Administrator	
Web	

PaMent	
Web	

Physician	
Web	

Chat	
Service	

PaMent	
Service	

Physician	
Service	

StaMsMcs	
Service	

NoMficaMon	
Service	

Record	
Service	

ApplicaMon	Admin	
(Browser)	

PaMent	Users	
(Browser)	

Physician	Users	
(Browser)	

StaMsMcs	
Service	StaMsMcs	
Service	

HTTP/2	 HTTP/2	 HTTP/2	HTTP/2	HTTP/2	HTTP/2	

Event	 Event	 JAX-RS/JSON	JAX-RS/JSON	 JAX-RS/JSON	

JAX-RS/JSON	

JAX-RS/JSON	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Proposed	PlaKorm	Architecture	

Java	EE	Packaging,	Serverless,	MulMtenancy	

OS	/	Hypervisor	

Container	RunMme	

Java	SE	RunMme		

Java	EE	RunMme	

Load	Balancer	

API	Gateway		

HTTP/2	

JSON	
Binding	

Event	API	

REST	API	

Security	API	 State	API	 Config	API	

Eventual	
Consistency	Resiliency	 Key	Value	

Store	API	

11	

NoSQL	

RDBMS	

Logging	

Config	

State	

Security	

NoMficaMon	

Reliability,	M
onitoring	

M
anagem

ent	and	O
rchestraMon	

Scheduling	and	ElasMc	Scaling	

Service	Discovery	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Recent	Java	EE	7	compa:bility	updates:	Congratula:ons!		Technical	Focus	Areas	

12	

§  Extend	for	reacMve	
programming	

§  Unified	event	model	
§  Event	messaging	API	
§  JAX-RS,	HTTP/2,	
Lambda,	JSON-B,	...	

Programming	Model	

§  API	to	store	
externalized	state	

State	

§  AutomaMcally	event	out	
changes	to	observed	
data	structures	

Eventual	Consistency	

§  Extension	to	support	
client-side	circuit	
breakers	

§  Resilient	commands	
§  Standardize	on	client-
side	format	for	
reporMng	health	

	

Resiliency	

§  New	spec	–	interfaces,	
packaging	format,	
manifest	

§  Ephemeral	
instanMaMon	

Serverless	
§  Secret	management	
§  OAuth		
§  OpenID	

Security	§  Package	applicaMons,	
runMmes	into	services	

§  Standalone	immutable	
executable	binary	

§  MulM-arMfact	archives	

Packaging	
§  Increased	density	
§  Tenant-aware	rouMng	
and	deployment	

Mul:tenancy	

§  Externalize		
configuraMon		

§  Unified	API	for	
accessing	configuraMon	

Configura:on	
§  Persistence	and	query	
interface	for	key	value	
and	document	DB	

Key	Value/Doc	Store	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Programming	Model	Trends	
•  Programming	model	needs	to	be	enhanced	to	support	

–  Distributed	smaller	services	
•  Interact	via	REST	/	JSON	making	remote	calls	asynchronously	

–  Results	in	a	lot	of	remote	calls	
–  Need	to	be	resilient	to	latency	and	other	network	failures	
–  Need	to	support	asynchronous	calls	

•  Need	to	support	eventual	consistency	for	data	persistence	as	well	as	across	service	calls	
•  ReacMve	style	programming	

–  Event	based	asynchronous	applicaMon	programming	model	

•  Built	in	resiliency	in	the	runMme	uMlizing	health	check,	circuit	breaker	and	bulkhead	
pa]erns	

•  Support	security	standards	like	OAuth,	Open	ID	Connect	that	are	more	relevant	for	
cloud	naMve	applicaMons	

13	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

HTTP/2,	REST,	JSON		

14	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Same	semanMcs	as	HTTP/1.1	
•  Binary	protocol	
• MulMplexed	communicaMon	

– Single	TCP	connecMon	to	single	origin,	
shared	for	consequent/parallel	requests	

•  Compressed	headers	
– HTTP/2	introduces	HPACK	(compression	
algorithm)	

•  Server	Push	
– Server	can	push	(cacheable)	content	to	the	
client	before	client	asks	

15	

HTTP/2	

Client	 Server	

HTTP/2	connecMon		
(single	TCP	connecMon)	

HTTP/2	
streams	

:method	GET	
:path	/resource1	

:method	GET	
:path	/resourceX	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Servlet	already	supports	
asynchronous	programming	
(introduced	in	Servlet	3.0)	

•  Servlet	4.0	adding	some	support	for	
HTTP/2	

•  ConsideraMons	for	Java	EE	9	
– Provide	asynchronous,	non-blocking	HTTP/
2	programming	API	which	can	fully	
leverage	features	like	server	push,	stream	
prioriMzaMon,	flow	control	etc.	

– Provide	unified	reacMve	HTTP	
programming	API	which	can	support	HTTP/	
1.x,	HTTP/2,	WebSocket,	SSE,	etc.	

•  JAX-RS	provides	REST	server	and	client	
side	support	

•  Proposed	to	be	enhanced	to	support		
–  Non-blocking	IO	
–  Security	standards	
–  Server	Sent	Events	

•  Client	enhancements	
–  Circuit	breakers	
–  ReacMve	client	APIs	

•  First	class	support	for	JSON	in	the	
plaeorm	for	processing	and	binding	
–  JSON-P	
–  JSON-B	

16	

Java	EE	9	Proposal	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Even:ng	

17	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Use	Cases	for	EvenMng	API	for	Cloud	
•  Handle	very	large	quanMMes	of	
messages	driven	by	events,	throughput	
is	the	dominant	concern	

•  Use	Cases:	
– Website	acMvity	tracking	
– Metrics,	Log	data	aggregaMon	
–  Gaming	data	feed	
–  Etc.	

•  New	Java	EE	API	is	needed	for	evenMng	
in	cloud	

18	

Event	Messaging	System	

broker	 broker	broker	

producer	
(frontend)	

producer	
(services)	

producer	
(adapters)	

producer	
(other)	

consumer	
(frontend)	

consumer	
(services)	

consumer	
(adapter)	

consumer	
(other)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Comparisons	of	EvenMng	Systems	Used	in	Cloud	
Kata	 Amazon	Kinesis	 Azure	Event	Hub	

HA	and	Fault	Tolerance	 ReplicaMon	between	cluster	
nodes.		
Support	zero	downMme	upgrades		

Synchronously	replicates	your	
streaming	data	across	three	
faciliMes	in	an	AWS	Region	

Geo-Redundant	Storage	
Availability	Sets	to	achieve	HA	
and	Fault	Tolerance	

Scalability	 Increase	parMMon	count	per	topic	
OR	number	of	downstream	
consumer	threads	to	increase	
throughput.	

Data	records	are	segregated	into	
different	shards,	throughput	can	
be	dynamically	adjusted	via	re-
sharding	

Scalable	depending	on	the	
number	of	throughput	units		

Delivery	semanMcs	 At	least	Once	 At	least	Once	 At	least	Once	

Thro]ling	 ?	 Yes	 Yes	

TransacMon	 No	 No	 No	

On-premises	Support	 Yes	 No	(cloud-based	service)	 No（managed	service）	

Security	 ?	 Yes	(HTTPS	for	all	operaMons)	 Yes	(SAS	tokens)	

RetenMon	 Unlimited	 Up	to	number	of	days	 Up	to	number	of	days	

19	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ExisMng	Java	EE	Technologies	for	Messaging,	EvenMng	
•  JMS		

– Designed	for	enterprise	messaging	
– Although	provide	varied	QoS,	must	meet	highest	requirements	as	a	Java	EE	
conformant	JMS	provider	

•  	CDI	Event	
– Designed	for	within	applicaMon	same	JVM	
– Producer	and	consumer	rendezvous	by	Object	type	and	qualifiers	

•  Java	API	for	WebSocket	
– Designed	for	integraMng	WebSockets	into	applicaMons	

•  JAX-RS	
– Designed	for	creaMng	REST	web	services	

20	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Event	API	Proposal	for	Java	EE	9	
• A	Simple	Event	API	

– Producer	and	Consumer	as	top	level	injectable	resources,	for	example	
@Inject EventPublisher(“mytopic”) publisher;
@Inject EventConsumer(“mytopic”) consumer

– declaraMve	message	listeners	-	any	POJO	as	event	listener,		for	example	
@EventListener(“mytopic”)
public void onMyEvent(MyEvent event) { //do something }

• ReacMve	style	for	async	evenMng	using	Java	9	Flow,		for	example	
					 public java.util.concurrent.Flow.Publisher<Status> sendAsync(List<EventMessage> events)

• Able	to	plugin	different	cloud	messaging	systems	in	Java	EE	for	evenMng	

21	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Resiliency	

22	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Proposal	for	Resiliency	

23	

§  ConnecMon	and	Response	Timeouts	
§  Retry	Requests	for	Transient	Failures	
§  Caching	of	Responses	
§  Leverage	Circuit	Breaker	Design	Pa]ern	
§  Overload	ProtecMon	for	Servers	
§  Bulkhead	for	Resource	IsolaMon	
§  Periodic	Health	Check	for	Liveliness	
§  Use	Async/Non-Blocking	Paradigm	
§  ReacMve	Programming	

§  High	Availability	
§  Reliability	
§  IsolaMon		

§  Prevent	resource	starvaMon	
§  cascading	errors	

§  Recovery	(Provide	alternate	paths,	
and	retries)	

§  Metrics	collecMons	
§  Feedback	to	Load	Balancer	and	

OrchestraMon	engine	

Problem	Statements	 Proposal	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Generic	way	how	to	deal	with	failures	in	
remote	service	invocaMon	process	

•  ProtecMng	system	resources	by	
monitoring	calls	to	remote	service	
–  If	some	certain	number	of	failures	is	reached,	
no	further	calls	are	made	and	the	error	is	
returned	immediately	

–  	When	a	circuit	is	“open”,	error	supplier	might	
provide	replacement	answer	
•  Could	be	completely	different	(empty)	answer,	or	
cached	value	from	previous	successful	invocaMon	

•  Several	HTTP	properMes	which	could	
trigger	failure	
–  TCP	level:	connect	error,	connect	Mmeout,	
connecMon	Mmeout,	..	

–  HTTP	level:	status	code,	…	

24	

Circuit	Breakers	

Closed	 Open	

Half	Open	

fail	count	reached	

Reset	Mmeout	

fail	
success	

success	or	fail	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Comparison	of	Selected	Circuit	Breaker	ImplementaMons	
Hystrix	 Failsafe	 Akka	CircuitBreaker	

CreaMon	 new	HystrixCommand()	or	
HystrixObservableCommand()	
Call	to	be	protected	to	be	put	in	
run()	method.	

new	CircuitBreaker()	
Call	to	be	protected	as	
argument	
Failsafe.with(circuitBreaker).r
un()	etc.	

new	
akka.pa]ern.CircuitBreaker()	
Call	to	be	protected	as	
argument	to	CircuitBreaker	
call	

sync/async	support	 Yes	 Yes	 Yes	

ReacMve	model	support	 Yes,	through	API	that	returns	
Observable	

No	direct	API	support.	But	
can	be	used	with	reacMve	
framework	such	as	
rx.Observable	

Yes	

ConfiguraMon	 Many	configuraMon	properMes	
supported,	through	Neelix	
Archaius.	

Many	configuraMon	
properMes	supported	
through	CircuitBreaker	and	
FailSafe	APIs.	

Only	a	few	configuraMon	
properMes	supported,	
through	CircuitBreaker	
constructor	

Threadpool	for	execuMon	Managed	thread	pools	internally	 Caller	to	provide	thread	pool	 Caller	to	provide	Scheduler	

25	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• AnnotaMon	for	resiliency	policies	
• Real-Mme	monitoring	and	dynamic	
configuraMons	

•  Support	for	reacMve	programming	
• Request/Response	caching		
• Graphical	Dashboard	showing	
service	dependencies	and	their	
runMme	stats	

public class BookService {

 ...

 @RetryPolicy(delayPeriod=10,
unit=SECONDS, numRetries=1)

@CircuitBreaker(fallbackMethod=“getBook
sByAuthorFallBack”)

 @BulkHeadPolicy(threadCount=5)

 public Collection<Book>
getBooksByAuthor(String authorName) {

 ...

 }

 public Collection<Book>
getBooksByAuthorsFallBack() {...}

 }

	
26	

Resiliency	–	Proposal	for	Java	EE	9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Reac:ve	Programming	

27	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ExisMng	Standard	for	ReacMve	Programming	
• ReacMve	Streams	provides	“a	standard	for	asynchronous	stream	processing	with	non-
blocking	back-pressure”	

• Core	concern	is	handling	back-pressure	
•  Several	frameworks,	tools,	libraries	are	emerging	to	develop	reacMve	applicaMons	

• RxJava	
• Akka	
• Reactor	
•  Spring	Framework	

•  ImplementaMons	can	interoperate	as	they	use	a	standard	API	
•  Java	SE	9	introduces	ReacMve	Streams	interfaces	through	Flow	APIs	

28	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Popular	ImplementaMons	and	Comparison	of	ReacMve	
Streams	

RxJava	 Reactor	 Akka	Stream	 Java	SE	9	Flow	

Architecture	 Event	driven	 Event	driven	 Actor	based	 Event	driven	

Back-pressure	 Yes	 Yes	 Yes	 Yes	

Concurrency	 Default	single	threaded	 Default	single	threaded	
Schedulers.parallel()	
	

Default	runs	parallel	 MulM	threaded	

Clustering	 No	 Yes	 No	

Publisher	 Single	 Mono	(0	or	1)	
Flux(N)	

Source.single(0	or	1)	
Source.from(N)	

SubmissionPublisher	(1	
by	default)	

DataFlow	 Synchronous	
Asynchronous	

Synchronous	
Asynchronous	

Synchronous	
Asynchronous	

Asynchronous(it	
provides	only	
SubmissionPublisher	
which	is	async	by	
default)	

29	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Proposal	for	Standardizing	ReacMve	
•  ReacMve	Streams	does	not	provide	comprehensive	set	of	APIs	for	cloud	naMve	
applicaMon	development	

•  In	order	to	provide	a	comprehensive	set	of	APIs	the	proposal	is	to	standardize	
– Publisher	/	Subscriber	APIs	
– Tie	Publisher	to	exisMng	data	structures	(e.g.	Iterable,	Arrays,	etc.)	
– Provide	operators	to	process	stream	of	events	
– Add	high	level	APIs	to	handle	back-pressure	
– Support	good	Error	handling	mechanism	
–  Interoperability	of	the	stream	of	events	

•  Build	on	JDK	9	Flow	APIs	
•  Allow	plugging	in	of	different	implementaMons	

30	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

State		

31	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 ConfidenMal	–	Oracle	Internal/Restricted/Highly	Restricted	

Java	EE	support	for	NoSQL	

32	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 ConfidenMal	–	Oracle	Internal/Restricted/Highly	Restricted	

Proposal	for	Managing	NoSQL	Databases	

33	

• Provide	a	consistent	programming	model	
• Provide	common	abstracMons	for	CRUD	operaMons	
and	addiMonal	support	for	the	most	common	flavors	
of	NoSQL	databases	

• Allow	for	direct	access	to	Vendor	Specific	
FuncMonality	

•  Simplified	Querying:	
• Query	inferences	based	on	method	names	
• Vendor	specific	query	annotaMons	

• AnnotaMons	grouped	by	category	of	funcMonality	

•  Java	EE	Standards	are	focused	on	
RDBMS.	
•  JPA	was	not	designed	with	
NoSQL	in	mind	

• A	single	set	of	APIs	or	annotaMons	
isn’t	adequate	for	all	database	types	

•  JPA	over	NoSQL	implies	inconsistent	
use	of	AnnotaMons.	

• Diverse	categories	of	NoSQL	
providers	

Problem	Statement	 Proposal	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 ConfidenMal	–	Oracle	Internal/Restricted/Highly	Restricted	 34	

Column	 Document	 Key/Value	 Graph	

HBase	 CouchDB	 Riak	

Cassandra	 MongoDB	 Oracle	NoSQL	 Neo4J	…	

JPA	 CRUD	 Paging	 Query	 Sort	 Config	 Async	
Query	 REST	 AudiMng	…	

NoSQL	Category	APIs	

Database	specific	APIs	

Core	APIs	(javax.persistence.nosql)	

Shared	Persistence	Infrastructure	(javax.persistence)	

NoSQL	

JDBC	

RDBMS	

Database	
AgnosMc	
APIs	

Category	
Specific		
APIs	

Vendor	
Specific	
APIs	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Basic	NoSQL	CRUD	APIs	
package javax.persistence.nosql; !
!
import java.util.Iterator; !
!
/** !
 * Basic CRUD operations on a NoSQL store. !
 * !
 * @param <K> Primary Key for the Object !
 * @param <V> Store Data !
 */ !
!
public interface CRUDStore<K extends ID, V> !
 extends BaseStore<K, V> { !
!
 /** !
 * Find all items in the store. !
 * !
 * @return the iterator for all items in the store. !
 */ !
 Iterator<V> findAll(); !
!
 /** !
 * Find an item based on a specific key or index. !
 * !
 * @return the iterator for all items in the store. !
 */ !
 V find(K key); !
!
 !
/** !
 * Saves a given item. Returns the current value of the object. !
 * This may not reflect the "actual" value of the item in an !

 * eventually consistent system. !
 * !
 * @param value !
 * @return the current entity !
 * @throws IllegalArgumentException if the item is null !
 */ !
 V persist(V value); !
!
 /** !
 * Deletes am item with the specific key. !
 * !
 * @param key !
 */ !
 void remove(K key); !
!
 /** !
 * Deletes am item which matches the specific value. !
 * !
 * @param value !
 */ !
 void remove(V value); !
!
} !
!

35	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	of	Category	and	Provider	Specific	APIs	
Category Specific (e.g.Key/Value): !
/**  
 * Basic Key/Value Store. The Key is composed of a set of one
or more  
 * strings.  
 */  
public interface KVStore<V> extends CRUDStore<ID<String>, V> {  
 /**  
 * Store the item based on its key.  
 */  
 void persist(ID<String>key, V value);  
}

/**  
 * Store with methods specific to key/value caches.  
 */  
public interface KVCacheStore<V> extends KVStore<V> {  
 /**  
 * Persist with an expiration time.  
 */  
 void persist(ID<String> key, V value, long expires);  
 
 /**  
 * Set or change the expiration time on an object.  
 */  
 void expire(ID<String>key, long expires);  
}  

Provider Specific: !
!
public interface VoldemortStore<V> extends KVStore<V> {  
 
 void get(ID<String> key, Transform<V> transform);  
 void get(ID<String> key, Versioned<V> value);  
 void get(ID<String> key, Versioned<V> value,
 Transform<V> transform);  
 
 void store(ID<String> key, Transform<V> transform);  
 void store(ID<String> key, Versioned<V> value);  
 void store(ID<String> key, Versioned<V> value,
 Transform<V> transform);  
 
 void delete(ID<String> key, Versioned<V> versioned);  
}

36	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 ConfidenMal	–	Oracle	Internal/Restricted/Highly	Restricted	

NoSQL	APIs	in	AcMon	
Application	Store	Definition	
	
public interface UserStore
 extends MongoStore<String,User> {

 /*
 * This query is inferred (generated) by its name.
 * The query looks for all documents where the
 * field “name” starts with “regex”
 */
 List<User> findByNameStartingWith(
 String regexp);

 /*
 * This query is inferred (generated) by its name.
 * The query looks for all documents where the
 * field “lastname” ends with with “regex”
 */
 List<User> findByLastnameEndingWith(
 String regexp);

 /*
 * This query is defined by the annotation
 */
 @Query("{ 'age' : { $gt: ?0, $lt: ?1 } }")
 List<User> findUsersByAgeBetween(
 int ageGT, int ageLT);
}
	
	

Application	Store	Usage	
	
public	class	UserStoreIntegrationTest	{	
	
		@Inject	
		private	UserStore	userStore;	
	
	
		public	void	insertUser()	{	
				final	User	user	=	new	User();	
				user.setName("Jon");	
				userStore.persist(user);	
				List<User>	users	=		
							userStore.findUsersByAgeBetween(5,10);	
		}	
}	

37	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Proposal	for	State	Management	API	

38	

§  Define	higher-level	State	Management	API	that	supports:	
§  Primary	key-based	reads	and	writes	
§  Queries	and	aggregaMons	
§  Data	events	and	in-place	processing	

§  Provide	blocking	(synchronous),	as	well	as	non-blocking	
(asynchronous	and	reacMve)	APIs		

§  Allow	implementaMons	for	different	kinds	of	data	Mers	
§  E.g.	In-Memory	Grid,	Cache,	RDBMS,	K/V	Stores	

§  Manage	transient	and	persistent	state	the	same	way	
§  Policy	defined	per	enMty	type	

§  Decouple	state	management	and	persistence	aspects	
§  Provide	in-memory	RI	that	can	be	used	for	dev	and	tesMng	

§  No	standard	API	to	access	state	
§  JDBC	and	JPA	are	not	enough	
§  Non-relaMonal	data	sources	are	

very	popular	in	the	cloud	
§  Most	exisMng	APIs	are	blocking	

§  Less	than	ideal	for	microservices	
§  Transient	and	persistent	state	are	

managed	differently	
§  State	management	is	too	Mghtly	

coupled	with	persistence		
§  Limits	scalability	

Problem	Statements	 Proposal	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

AddiMonal	pa]ern	for	State	Management	
• Command	
• Query		
• Responsibility	
•  SegregaMon		

39	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

UserService	

	

	

Data	Store	

public	interface	UserService	{	
	
		void	addUser(User	user);	
		void	makeUserPreferred(UserId	id);	
		User	getUser(UserId	id);		
		Set<User>	getPreferredUsers();	
		void	removeUser(UserId	id);	
	
}	

40	

Different	services	perform	read	and	write	operaMons		

CRUD	vs.	CQRS	

Same	service	performs	read	and	write	operaMons		

public	interface	UserReadService	{	
			User	getUser(UserId	id);	
			Set<User>	getPreferredUsers();		
}	

UserReadService	

public	interface	UserWriteService	{	
		void	addUser(User	user);	
		void	makeUserPreferred(UserId	id);	
		void	removeUser(UserId	id);	
}	
	

UserWriteService	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Read	and	Write	operaMons	performed	on	the	same	model	

41	

Read	and	Write	operaMons	are	segregated	

CRUD	vs.	CQRS	

Data	Store	Read	/	Write	Model	

Writes	

Reads	
Presenta:on	Layer	

Data	Store	

Presenta:on	Layer	

Write	Model	

Read	Model	

Reads	

Writes	

Query	

Command	

Data	Store	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CQRS	pa]ern	overview	
• Reads	and	writes	may	be	performed	on	separate	models	
•  Typically	used	in	conjuncMon	with	Event	Sourcing	via	

– Commands	
– Domain	Events		
– Event	Store		

	

42	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CQRS	pa]ern	overview	
• Commands	

– Issued	to	a	service	to	update	the	write	model	

• Domain	Events	
– 	Updates	are	recorded	as	immutable	events	to	an	Event	store		

•  Event	store		
– Ordered	record	of	events	for	answering	queries	in	the	read	model	
– Can	be	used	for	providing	other	materialized	views	of	data	

•  The	pa]ern	can	be	useful	for	porMons	of	a	system	(“bounded	contexts”	in	
DDD	terminology)	

	

43	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	can	we	do	in	Java	EE9	
•  Evolve	the	plaeorm	to	facilitate	CQRS	implementaMon		
•  Explore	with	expert	group	to	naMvely	support					

– Commands	
– Domain	Events	
– Domain	Event	Handlers	
– Event	Store	
	

	 44	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Eventual	Consistency	

45	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Eventual	Consistency	for	Object	State	
Microservice	instances	may	have	a	need	to	share	state	of	an	object	
•  Same	object	(of	same	idenMty)	may	be	simultaneously	used	by	them	
•  Changes	made	by	one	service	need	to	be	propagated	to	other(s)	
• MulMple	services	may	update	the	object	simultaneously	in	their	environment	
resulMng	in	conflicts	

•  State	sharing	across	micro-services	could	be	done	using	mulMple	technologies	
– Cache	(remote/distributed)		based	systems	
– Message	oriented	systems	(publisher,	subscriber)	
– Database	based	systems	(push,	pull)	
– Custom	mechanisms	

•  ApplicaMon	code	needs	to	make	use	of	above	vendor/technology	specific	APIs	to	
achieve	state	sharing	

46	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ApplicaMon’s	ResponsibiliMes	Using	Various	Technologies	

Caching	 Messaging/Even:ng	 JPA+	Database	

Source	of	truth	(For	data	
consistency)	

Cache	(distributed,	parMMoned,	replicated	etc.,)	 Messaging	provider’s	persistent	store	 Data-store	

Crea:ng	an	Object	 “add/put”	the	object	in	the	cache	with		an	idenMty	
(“key”)	

	Send	a	special	message	to	represent	
creaMon	of	object	by	specific	idenMty.	

	“persist”	the	EnMty	in	the	database	
through	JPA	

Upda:ng	an	Object	 	Put	(‘replace”)	the	object	in	the	cache	 Send	an	event/message	with	changes	
done		to	the	object	

Start	a	transacMon	and	update	the	
enMty	(object)	in	the	database.	

Listening	to	Object	
changes	

•  Add	a	listener	to	cache	entry	in	the	cache	so	as	to	
be	noMfied	of	object	changes.	

•  On	noMficaMon,	compute	the	difference	i.e.,	
changed	a]ributes	and	refresh	the	object	state	

Receive	the	message/event	having	
changes	to	a]ributes,	refresh	the	
object	state	

Through	vendor	specific	means,	listen	
to	changes	to	a	“row”	in	database	and	
call	EnMtyManager.refresh(“enMty”)	
to	refresh	object	state	

Dele:ng	an	Object	 “remove”	the	object	from	the	cache	 Send	a	special	message	to	represent	
deleMon	of	object	by	specific	idenMty.	

Start	a	transacMon,	call	
EnMtyManager.remove(“enMty”)	to	
delete	the	object	from	the	database	

Managing	Conflicts	in	case	
of	mul:ple	sources	
upda:ng	an	Object	

Custom	conflict	resolver	need	to	be	implemented	by	
applicaMon	

No	support	from	messaging	provider.	
Each	applicaMon	instance	need	to	
detect	and	resolve	conflict	

Usually,	database	locks	are	used	to	
avoid	conflicts.	

Complete	POJO/Object	
based	solu:on	

ParMal	(no	change	noMficaMon	support)	 No	 ParMal	(no	change	noMficaMon	
support,	conflict	resoluMon,	need	
transacMons)	

47	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Listening	to	changes	 Resolving	conflicts	

48	

Eventual	Consistency	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Benefits	
• Object	based	state	sharing	model.	
• No	dependency	on	specific	technology	or	vendor	for	the	micro-service	
code.	

•  Flexibility:	A	micro-service	may	decide		
– how	to	“refresh”	the	state,	through	auto-refresh	or	listen	to	fine	grained	changes	and	
refresh	

– Whether	to	“lock”	and	then	update	or	not	
– Whether	to	use	“custom”	conflict	resolver	or	any	framework	provided	conflict	
resolver	

49	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Configura:on	

50	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	API	for	ConfiguraMon	
• A	new	JSR	to	standardize	Java	EE	applicaMon	configuraMon	definiMon,	
access	and	management	

•  Inspired	by	
– Apache	Tamaya	
– Apache	DeltaSpike	
– Neelix	Archaius	
– Spring	ConfiguraMon	

• Proposed	for	JavaEE	8	and	JavaEE	9	
•  Targeted	for	the	cloud	

51	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ConfiguraMon	API	Main	Features	

52	

ConfiguraMon	
API	

XML	 JSON	prop	

DB	web	

ApplicaMon	

• Unified	API	
• ProperMes,	xml	an	json	formats	
support	out	of	the	box	

•  Externalized	configuraMon	
•  Support	of	mulMple	configuraMon	
sources	

•  Layering	and	overrides	
• OpMonal	configuraMon	schema	
• Polling	and	Dynamic	ProperMes	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ConfiguraMon	API	Sample	

53	

foo=JavaOne !
foo.bar=9 !
foo.bar.baz=2016 !

Config config = ConfigProvider.getConfig();

// Returns "JavaOne"
String foo = config.getProperty("foo");

// Returns string "9"
String fooBar = config.getProperty("foo.bar");

// Returns null
String notExists = config.getProperty("not.exists");

// Returns string "default"
String notExistsDefault = config.getProperty("not.exists","default");

// Returns number 2016
Long fooBarBaz = config.getProperty("foo.bar.baz", Long.class);

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 ConfidenMal	–	Oracle	Internal/Restricted/Highly	Restricted	

Mul:-Tenancy	

54	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SaaS	MulMTenancy	–	Use	Cases	
•  Tenant	specific	UI	customizaMon	

– e.g.	display	tenant	specific	logo	on	the	UI	
– JSF	based	UI	composiMon	at	runMme	

•  Tenant	specific	data	source	
– e.g.	connect	to	tenant	specific	DB	

•  Tenant	specific	security	

55	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Container	associates	the	inbound	
request	to	the	Tenant	and	populate	
the	TenantContext	
– e.g.	use	virtual	server	

•  TenantContext	holds	informaMon	
to	idenMfy	the	Tenant	
– e.g.	TenantID,	etc.	

• Once	populated,	TenantContext	
can	be	used	throughout	by	the	
applicaMon	and	the	container	to	do	
tenant	specific	processing	

public interface TenantContext {

 public String getTenantID();

 public String getTenantName();

 public void setProperty(String name,
String value);

 public String getProperty(String
name);

 public Map<String, String>
getProperties();

}

56	

Tenant	Context	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  ApplicaMons	declare	themselves	as	
@MulMTenant		

•  Each	tenant	has	its	own	data	that	is	
separated	and	protected	from	other	
tenants	

•  MulMTenant	applicaMon	uses	
TenantContext	to	connect	to	tenant	
specific	DB	

•  RunMme	uses	TenantContext	to	connect	
to	and	return	tenant	specific	DB	by	
looking	it	up	in	a	naming	service	
–  Data	source	APIs	may	be	enhanced	to	support	
mulMtenancy	via	@MulMTenant	to	allow	
containers	to	connect	to	tenant	specific	data	
source	automaMcally	

57	

MulMtenant	Data	Access	

Virtual	
Server		

Virtual	
Server		

MulMtenant	
ApplicaMon	

Tenant	Context	

Tenant	A	

Tenant	B	

DB1	

DB2	

Tenant	A	

Tenant	B	

Config	
Tenant	A	uses	DB1	
Tenant	B	uses	DB2	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Security	

58	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Proposal	for	Security	

59	

§  Standard	API	for	IdenMty	Store	AbstracMon,		
§  Simple	configuraMon	to	support	changing	IdenMty	store	
§  Standard	API	for	AuthenMcaMon	Mechanisms	
§  Extensible	to	support	OpenIDConnect	
§  Security	Context	for	ApplicaMon	to	consistently	

determine	how	the	user	was	authenMcated,	groups,	
roles	

§  IdenMty	could	be	from	diverse	
IdenMty	stores	

§  AuthenMcaMon	mechanism	could	
change	between	deployment	
environments	

§  OpenIDConnect	is	emerging	as	the	
default	authenMcaMon	standard	

§  Who	AuthenMcated	the	user?		

Problem	Statements	 Proposal	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	EE	9	Security	

• AuthorizaMon	Discover/publish	OAuth	Resources	
– OAuth	Client	registraMon		
– AuthorizaMon	Interceptors	
– AuthorizaMon	Rules	EL	

•  Token	representaMons	
– API	to	acquire	tokens	
– API	to	validate	tokens	

60	

Areas	for	Explora:on	with	EG	

Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Packaging	and	Orchestra:on	

61	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Portable	Java	EE	9	Microservice	

Portable	
App	

Define	
Provisioning	

Details	

Influence	
Service	

Placement	

Service	
Discovery	

Ensure	
Availability	

62	

Common	Applica:on	Requirements	Across	Different	Java	EE	9	Environments	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

High	Level	Architecture	

63	

Common	cloud	infrastructure	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	EE	9	Portable	ApplicaMon	Requirements	

Service	Metadata	
•  Declare	Required	Resources	(CPU,	Memory,	etc.)	
•  Describe	ApplicaMon	Metadata	
•  Versioning	InformaMon	for	RouMng	and	Discovery	
•  Dependency	InformaMon	

•  Service	Grouping	

Service	Discovery	
•  UMlize	consistent	naming	pa]ern	to	discover	service	dependencies	
•  Easily	find	Vendor	Cloud	Services	with	InjecMon/Auto	Wiring	

Availability	
•  Provide	Health	Check	Method	Through	Metadata	or	AnnotaMons	
•  Custom	Service	Performance	Metrics	Through	Metadata	or	AnnotaMons	

64	

Areas	for	explora:on	with	EG	for	Spec	drajs	
	

Java	
EE	9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	
•  Java	EE	9	to	bring	standards	around	microservices	and	developing	for	the	
cloud	
– Enables	portability	of	applicaMons	across	mulMple	vendors	

• Want	to	work	with	exisMng	soluMons	and	vendors	
•  Standardize	commonly	faced	problems	for	developers	in	the	new	
environment		

65	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Next	Steps	

•  Take	the	survey	
– h]p://glassfish.org/survey	

•  Send	technical	comments	to	
– users@javaee-spec.java.net	

•  Join	the	JCP	–	come	to	Hackergarden	in	Java	Hub	
– h]ps://jcp.org/en/parMcipaMon/membership_drive		

•  Join	or	track	the	JSRs	as	they	progress	
– h]ps://java.net/projects/javaee-spec/pages/SpecificaMons	

• Adopt-a-JSR	
– h]ps://community.oracle.com/community/java/jcp/adopt-a-jsr	
	

Give	us	your	feedback	

66	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Where	to	Learn	More	at	JavaOne	

67	

Session	Number	 Session	Title	 Day	/	Time		

CON1558		 What's	New	in	the	Java	API	for	JSON	Binding	 Monday	5:30	p.m.	

BOF7984		 Java	EE	for	the	Cloud	 Monday	7:00	p.m.	

CON4022	 CDI	2.0	Is	Coming	 Tuesday	11:00	a.m.	

CON7983		 JAX-RS	2.1	for	Java	EE	8		 Tuesday	12:30	p.m.	

CON8292	 Portable	Cloud	ApplicaMons	with	Java	EE	 Tuesday	2:30	p.m.	

CON7980		 Servlet	4.0:	Status	Update	and	HTTP/2		 Tuesday	4:00	p.m.	

CON7978		 Security	for	Java	EE	8	and	the	Cloud	 Tuesday	5:30	p.m.	

CON7979		 ConfiguraMon	for	Java	EE	8	and	the	Cloud		 Wednesday	11:30	a.m.	

CON7977	 Java	EE	Next	–	HTTP/2	and	REST	 Wednesday	1:00	p.m.	

CON6077	 The	Illusion	of	Statelessness	 Wednesday	4:30	p.m.	

CON	7981	 JSF	2.3	 Thursday	11:30	a.m.	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 68	

		

