i d/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 2

Agenda
» Overview

E» Programming Model
) State

E» Configuration

) Multi-Tenancy

) Security
E» Packaging and Orchestration

E» Summary

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

:

() /
)

pplication D¢

/
:
y
<

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 4

Java EE Application

Browser

medrec.ear \
P — Statistics Admin Physician Chat Patient

Servlet Servlet Servlet
chat.war Exploded .

Archives =

Record l Physician Patient ifi
EJB I EJB EJB i

Datalmport

physician.ear

* Appisthree large archives
 Dependencies are tightly coupled

* Cannot scale individual components
 Cannot upgrade individual components

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 5

[S ORACLE'

Rapid Changes Over Past Few Years

Driven by increasing business needs

Microservices
Apps divided into many small pieces

v,
Distributed Computing
Many data centers, AZs, regions, etc.)
New Technology Trends
Docker, Cloud, DevOps, etc.)

QLa

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 6

The Twelve Factors
1. Codebase

— One codebase tracked in revision control, many

deploys
2. Dependencies
— Explicitly declare and isolate dependencies

3. Configuration
— Store configuration in the environment

4. Backing services
— Treat backing services as attached resources

5. Build, release, run
— Strictly separate build and run stages

6. Processes

— Execute the app as one or more stateless
processes

10.

11.

12.

Port binding

Export services via port binding

Concurrency
Scale out via the process model

Disposability

Maximize robustness with fast startup and graceful
shutdown

Dev/prod parity

Keep development, staging, and production as similar
as possible

Logs
Treat logs as event streams

Admin processes
Run admin/management tasks as one-off processes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Cloud Has Become the Platform

Application
Consume Application Building Blocks as a Service

2, o <, 220,
22 £

dZia, £, 22, £, £

Cloud

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

It’s Confusing! Enter Java EE 9

* Java EE has provided the standard
Too many choices....) infrastructure for building enterprise

Which components? f

Overall arcPF\)itecture? applications

Standards? * With the shift to cloud the type of

_ Vendor commitment? applications and the requirements for these
— applications have changed
) L .
» =~ . Appllcatlo_ns are becoming more
, Microservice oriented

:_ :‘.' X ‘

i

* Java EE 9 provides an opportunity to create
a standard for applications deployed to the
cloud to simplify development and
maximize portability

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 9

LS ORACLE'

Java EE Application as Independent Services

Service

[Notification

/

J

HTTP/2

|

Application Admin
(Browser)

Administrator
Web

Patient Users
(Browser)

Patient
Web

HTTP/2

HTTP/2

Chat Physician
Service Web

JAX-RS/ISO

Statistics
Service

Service

JAX-RS/JSON

Physician Users
(Browser)

HTTP/2

J

Physician Record
Service Service

AX-RS/JSON|JAX-RS/JSON

|

A

JAX-RS/JSON

J

API| Catalog

Persistence(KV)

Securit Data Change Java-EE
! Notification Service APls
Persistence Cloud

(RDBMS)

Eventing Logging/
Telemetry

Platform Services

J

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

10

Proposed Platform Architecture

wn
O
-
(D
o
=
=
0fe}
Q
S
o
m
)
wn
.
o
wn
O
8
=
0fe]

P

—

Load Balancer

API| Gateway

Service Discovery

N —

JSON e Eventual
Binding MES 1 ARG Consistency

) ‘ v v

Key Value
Store API

A

HTTP/2 Event API Security API State API
v, | W,

Config API

Java EE Runtime

3urioyiuoln ‘Ayijigeray

Java SE Runtime

uoneJ1saydiQ pue juswasdeuelp

t Container Runtime

Java EE Packaging, Serverless, Multitenancy

)

ST Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

OS / Hypervisor

‘ﬁ) JavaOne

RDBMS

NoSQL

Logging

Config

State

Security

Notification

11

Technical Focus Areas

= Extend for reactive = Persistence and query = Externalize = Extension to support
programming interface for key value configuration client-side circuit
= Unified event model and document DB = Unified API for breakers
= Event messaging API R — accessing configuration = Resilient commands
= JAX-RS, HTTP/2, = Standardize on client-
Lambda, JSON-B, ... = Automatically event out | SR side format for
changes to observed reporting health
data structures » |ncreased density

Packaging = Tenant-aware routing S

runtlmesmt'o services . New spec — interfaces, = Secret management
. Standalonelmmutable packaging format, = OAuth
executable binary manifest = OpenID
= Multi-artifact archives = Ephemeral " APIto stpre
: N externalized state
instantiation

« . .
= lm Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

[S ORACLE'

Programming Model Trends

* Programming model needs to be enhanced to support
— Distributed smaller services

Interact via REST / JSON making remote calls asynchronously

— Results in a lot of remote calls
— Need to be resilient to latency and other network failures

— Need to support asynchronous calls
Need to support eventual consistency for data persistence as well as across service calls

Reactive style programming
— Event based asynchronous application programming model

Built in resiliency in the runtime utilizing health check, circuit breaker and bulkhead
patterns

Support security standards like OAuth, Open ID Connect that are more relevant for
cloud native applications

= lavaone Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 13

LS ORACLE

BHTTP/2, REST;

HTTP/2

* Same semantics as HTTP/1.1
* Binary protocol

:method GET

:path /resourcel

* Multiplexed communication
HTTP/2 connection

— Slngle TCP connection to single origin, (single TCP connection)
shared for consequent/parallel requests %

~

* Compressed headers

— HTTP/2 introduces HPACK (compression
algorithm)

e Server Push

— Server can push (cacheable) content to the _
. . :method GET HTTP/2
client before client asks ‘path /resourceX streams

‘ﬁ) JavaOne

= SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 15

Java EE 9 Proposal

* Servlet already supports * JAX-RS provides REST server and client
asynchronous programming side support
(introduced in Servlet 3.0) * Proposed to be enhanced to support
* Servlet 4.0 adding some support for ~ Non-blocking 10
HTTP/Z — Security standards
— Server Sent Events
— Provide asynchronous, non-blocking HTTP/ — Circuit breakers
2 programming APl which can fully _ Reactive client APIs
leverage features like server push, stream , ,
prioritization, flow control etc. * First class support for JSON in the
platform for processing and binding

— Provide unified reactive HTTP

programming APl which can support HTTP/ — JSON-P
1.x, HTTP/2, WebSocket, SSE, etc. — JSON-B

!i) JavaOne

L ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Use Cases for Eventing API for Cloud

* Handle very large quantities of
messages driven by events, throughput (?mdtuce(;) (p(rdelécer)
i< the dominant concern ronten (services) adapters (other)

. :
Use Cases: Event Messaging System
— Website activity tracking e i il Al

broker broker broker

— Metrics, Log data aggregation

— Gaming data feed
— Etc.

consumer consumer consumer

. : (adapter) (services)] (frontend) (other)

* New Java EE APl is needed for eventing :
in cloud

‘ﬁ) JavaOne

I Sorce Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 18

Comparisons of Eventing Systems Used in Cloud

HA and Fault Tolerance Replication between cluster Synchronously replicates your Geo-Redundant Storage
nodes. streaming data across three Availability Sets to achieve HA
Support zero downtime upgradesfacilities in an AWS Region and Fault Tolerance

calability Increase partition count per topicData records are segregated into Scalable depending on the

OR number of downstream different shards, throughput can number of throughput units
consumer threads to increase be dynamically adjusted via re-

throughput. sharding

Delivery semantics At least Once At least Once At least Once

hrottling ? Yes Yes
ransaction No No No

On-premises Support Yes No (cloud-based service) No (managed service)
ecurity ? Yes (HTTPS for all operations) Yes (SAS tokens)

Unlimited Up to number of days Up to number of days

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 19

LS ORACLE'

Existing Java EE Technologies for Messaging, Eventing
* JIMS

— Designed for enterprise messaging

— Although provide varied QoS, must meet highest requirements as a Java EE
conformant JMS provider

* CDI Event

— Designed for within application same JVM
— Producer and consumer rendezvous by Object type and qualifiers

* Java API for WebSocket
— Designed for integrating WebSockets into applications

* JAX-RS

— Designed for creating REST web services

= lavaone Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

LS ORACLE

20

Event APl Proposal for Java EE 9
* A Simple Event API

— Producer and Consumer as top level injectable resources, for example
@Inject EventPublisher (“mytopic”) publisher;

@Inject EventConsumer (“mytopic”) consumer

— declarative message listeners - any POJO as event listener, for example

@EventListener (“mytopic”)
public void onMyEvent (MyEvent event) { //do something }

* Reactive style for async eventing using Java 9 Flow, for example

public java.util.concurrent.Flow.Publisher<Status> sendAsync (List<EventMessage> events)

* Able to plugin different cloud messaging systems in Java EE for eventing

= lavaone Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 21

LS ORACLE

Proposal for Resiliency

= High Availability = Connection and Response Timeouts
= Reliability = Retry Requests for Transient Failures
= |solation = Caching of Responses
= Prevent resource starvation = Leverage Circuit Breaker Design Pattern
= cascading errors = Qverload Protection for Servers
= Recovery (Provide alternate paths, = Bulkhead for Resource Isolation
and retries) = Periodic Health Check for Liveliness
= Metrics collections = Use Async/Non-Blocking Paradigm
= Feedback to Load Balancer and = Reactive Programming
Orchestration engine

‘ﬁ) JavaOne

I Sorce Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 23

Circuit Breakers

* Generic way how to deal with failures in
remote service invocation process

* Protecting system resources by
monitoring calls to remote service

— If some certain number of failures is reached,
no further calls are made and the error is
returned immediately

— When a circuit is “open”, error supplier might
provide replacement answer

* Could be comPIeter different (empty) answer, or
cached value from previous successful invocation

Several HTTP properties which could
trigger failure

— TCP level: connect error, connect timeout,
connection timeout, ..

— HTTP level: status code, ...

‘ﬁ) JavaOne

LS ORACLE'

success or fail

success

fail count reached

Half Open

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Reset timeout

24

Comparison of Selected Circuit Breaker Implementations
L el R eGeiBiele

new HystrixCommand() or new CircuitBreaker() new
HystrixObservableCommand() Call to be protected as akka.pattern.CircuitBreaker()
Call to be protected to be putin argument Call to be protected as

run() method. Failsafe.with(circuitBreaker).rargument to CircuitBreaker
un() etc. call

ync/async support Yes Yes Yes

ACET Y W [ele [SIBYU]e]oJe]s MY €S, through API that returns No direct APl support. But Yes

Observable can be used with reactive

framework such as

rx.Observable

Many configuration properties Many configuration Only a few configuration
supported, through Netflix properties supported properties supported,
Archaius. through CircuitBreaker and through CircuitBreaker
FailSafe APIs. constructor

WICEL el RIS ClNlolsl Managed thread pools internally Caller to provide thread pool Caller to provide Scheduler

‘,)]avaOne | R
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Resiliency — Proposal for Java EE 9

public class BookService {

* Annotation for resiliency policies

* Real-time monitoring and dynamic @RetryPolicy (delayPeriod=10,
. . unit=SECONDS, numRetries=1l)
configurations

. . @CircuitBreaker (fallbackMethod="getBook
* Support for reactive programming sByAuthorFallBack”)

@BulkHeadPolicy (threadCount=5)

public Collection<Book>
getBooksByAuthor (String authorName) {

* Request/Response caching

* Graphical Dashboard showing
service dependencies and their } '

runtime stats public Collection<Book>
getBooksByAuthorsFallBack() {...}

}

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 26

Existing Standard for Reactive Programming

* Reactive Streams provides “a standard for asynchronous stream processing with non-
blocking back-pressure”

* Core concern is handling back-pressure
* Several frameworks, tools, libraries are emerging to develop reactive applications
* RxJava
* Akka
* Reactor
* Spring Framework
* Implementations can interoperate as they use a standard API

* Java SE 9 introduces Reactive Streams interfaces through Flow APIs

= lavaone Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

LS ORACLE'

28

Popular Implementations and Comparison of Reactive
Streams

Architecture Event driven Event driven Actor based Event driven

Back-pressure Yes Yes Yes Yes

Default single threaded Default single threaded Default runs parallel Multi threaded
Schedulers.parallel()

Clustering No Yes No

Publisher Single Mono (0O or 1) Source.single(0 or 1) SubmissionPublisher (1

Flux(N) Source.from(N) by default)
DataFlow Synchronous Synchronous Synchronous Asynchronous(it
Asynchronous Asynchronous Asynchronous provides only

SubmissionPublisher
which is async by
default)

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

P ORACLE'

Proposal for Standardizing Reactive

* Reactive Streams does not provide comprehensive set of APIs for cloud native
application development

* |[n order to provide a comprehensive set of APIs the proposal is to standardize
— Publisher / Subscriber APIs
— Tie Publisher to existing data structures (e.g. Iterable, Arrays, etc.)
— Provide operators to process stream of events
— Add high level APIs to handle back-pressure

— Support good Error handling mechanism
— Interoperability of the stream of events

* Build on JDK 9 Flow APIs
* Allow plugging in of different implementations

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

30

!;) JavaOne

LS ORACLE'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

—TTT T

. : e NS

o
L8

Java EE support for NoSQL

Proposal for Managing NoSQL Databases

e Java EE Standards are focused on e Provide a consistent programming model
RDBMS. e Provide common abstractions for CRUD operations
* JPA was not designed with and additional support for the most common flavors

NoSQL in mind
e Asingle set of APIs or annotations
isn’t adequate for all database types
e JPA over NoSQL implies inconsistent
use of Annotations.
e Diverse categories of NoSQL
providers

of NoSQL databases
e Allow for direct access to Vendor Specific
Functionality
e Simplified Querying:
e Query inferences based on method names
e Vendor specific query annotations
e Annotations grouped by category of functionality

‘ﬁ) JavaOne

— : . - . ; .) .) .) 33
< SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

RDBMS NOSQL

L Shared Persistence Infrastructure (javax.persistence)
J
Database
. ‘ | . A ‘ " | Agnostic
JPA L CRUD JL Paging J Query L Sort J L Config J L Qf}g:; JL REST J . Auditing gAP|5
Y
—
NoSQL Category APIs Catego]
Specific
Column Key/Value APls
JDBC -

Database specific APIs

MongoDB Oracle NoSQL Vendor
Specific

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 34

LS ORACLE

Basic NoSQL CRUD APIs

package javax.persistence.nosql; * eventually consistent system.
%
import java.util.Iterator; * @param value
* @return the current entity
Ve * @throws IllegalArgumentException if the item is null
* Basic CRUD operations on a NoSQL store. */
* V persist(V value);
* @param <K> Primary Key for the Object
* @param <V> Store Data VESS
*/ * Deletes am item with the specific key.
b3
public interface CRUDStore<K extends ID, V> * @param key
extends BaseStore<K, V> { */
void remove(K key);
VESS
*x Find all items in the store. /%%
* *x Deletes am item which matches the specific value.
x @return the iterator for all items in the store. *
*/ * @param value
Iterator<V> findAll(); */
void remove(V value);
/ k%
*x Find an item based on a specific key or index. }
%

x @return the iterator for all items in the store.

*/
V find(K key);

/%
* Saves a given item. Returns the current value of the object.
*x This may not reflect the "actual" value of the item in an

‘ﬁ) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

[S ORACLE'

Example of Category and Provider Specific APls

Category Specific (e.q.Key/Value):

|] [] []
7 Provider Specific:
* Basic Key/Value Store. The Key is composed of a set of one
or more
* strings. public interface VoldemortStore<V> extends KVStore<V> {
*/
public interface KVStore<V> extends CRUDStore<ID<String>, V> { void get(ID<String> key, Transform<V> transform);
Jx % void get(ID<String> key, Versioned<V> value);
* Store the item based on its key. void get(ID<String> key, Versioned<V> value,
*/ Transform<V> transform);
void persist(ID<String>key, V value);
} void store(ID<String> key, Transform<V> transform);
void store(ID<String> key, Versioned<V> value);
Jk* void store(ID<String> key, Versioned<V> value,
* Store with methods specific to key/value caches. Transform<v> transform);
*/
public interface KVCacheStore<V> extends KVStore<v> { void delete(ID<String> key, Versioned<V> versioned);
Jx* }

* Persist with an expiration time.
*/
void persist(ID<String> key, V value, long expires);

Jx*
* Set or change the expiration time on an object.
*/

void expire(ID<String>key, long expires);

}

éiJavaOne”

ST Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

NoSQL APIs in Action

Application Store Definition

public interface UserStore
extends MongoStore<String,User> {

/*

* This query is inferred (generated) by its name.

* The guery looks for all documents where the
* flel “name” starts with “regex”

Llst<User> findByNameStartingWith (
String regexp);

/*

* This query is inferred (generated) by its name.

* The guery looks for all documents where the
* field “lastname” ends with with “regex”
*/
List<User> findByLastnameEndingWith (
String regexp);

/*

*/This query is defined by the annotation
*

@Query("{ 'age' : { $gt: 20, $1lt: 21 } }")

List<User> findUsersByAgeBetween (
int ageGT, int agelLT);

g = JavaOne

ORACLE’

Application Store Usage

public class UserStorelntegrationTest {

@Inject
prlvate UserStore userStore;

public void insertUser() {
final User user = new User();
user.setName("Jon");
userStore.persist(user);
List<User> users =
userStore.findUsersByAgeBetween(5,10);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

37

Proposal for State Management API

Problem Statements

No standard API to access state

= JDBC and JPA are not enough

= Non-relational data sources are

very popular in the cloud

Most existing APIs are blocking

= Less than ideal for microservices
Transient and persistent state are
managed differently
State management is too tightly
coupled with persistence

= Limits scalability

Proposal

Define higher-level State Management API that supports:
= Primary key-based reads and writes
= Queries and aggregations
= Data events and in-place processing
Provide blocking (synchronous), as well as non-blocking
(asynchronous and reactive) APIs
Allow implementations for different kinds of data tiers
= E.g.In-Memory Grid, Cache, RDBMS, K/V Stores
Manage transient and persistent state the same way
= Policy defined per entity type
Decouple state management and persistence aspects
Provide in-memory Rl that can be used for dev and testing

‘ﬁ) JavaOne

P

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Additional pattern for State Management

* Command
* Query
* Responsibility

* Segregation

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserv.

ed.

39

CRUD vs. CQRS

UserService

public interface UserService {

void addUser(User user);
void makeUserPreferred(Userld id);
User getUser(Userld id);

Set<User> getPreferredUsers();
void removeUser(Userld id);

Same service performs read and write operations

‘ﬁ) JavaOne

LS ORACLE

UserReadService

public interface UserReadService {
User getUser(Userld id);
Set<User> getPreferredUsers();

}

UserWriteService

public interface UserWriteService {
void addUser(User user);
void makeUserPreferred(Userld id);
void removeUser(Userld id);

}

Different services perform read and write operations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

40

CRUD vs. CQRS

Presentation Layer
Presentation Layer

Data Store Data Store

Read and Write operations performed on the same model = Read and Write operations are segregated

!:() JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 41

LS ORACLE'

CQRS pattern overview

* Reads and writes may be performed on separate models

* Typically used in conjunction with Event Sourcing via
— Commands
— Domain Events
— Event Store

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

42

CQRS pattern overview

* Commands
— Issued to a service to update the write model

* Domain Events
— Updates are recorded as immutable events to an Event store

* Event store
— Ordered record of events for answering queries in the read model
— Can be used for providing other materialized views of data

* The pattern can be useful for portions of a system (“bounded contexts” in
DDD terminology)

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

43

What can we do in Java EE9

* Evolve the platform to facilitate CQRS implementation

* Explore with expert group to natively support
— Commands
— Domain Events
— Domain Event Handlers
— Event Store

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

44

.

Y ¢
S, JavaOner

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Eventual Consistency for Object State

Microservice instances may have a need to share state of an object
* Same object (of same identity) may be simultaneously used by them
* Changes made by one service need to be propagated to other(s)

* Multiple services may update the object simultaneously in their environment
resulting in conflicts

* State sharing across micro-services could be done using multiple technologies
— Cache (remote/distributed) based systems
— Message oriented systems (publisher, subscriber)
— Database based systems (push, pull)
— Custom mechanisms

* Application code needs to make use of above vendor/technology specific APIs to
achieve state sharing

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 46

Application’s Responsibilities Using Various Technologies
| lcachimg | Messaging/Eventing | PA+Database

Source of truth (For data
consistency)

Creating an Object

Updating an Object

Listening to Object
changes

Deleting an Object

Managing Conflicts in case
of multiple sources
updating an Object

Complete POJO/Object
based solution

‘ﬁ) JavaOne

LS ORACLE'

Cache (distributed, partitioned, replicated etc.,)

“add/put” the object in the cache with an identity
(llkey”)

Put (‘replace”) the object in the cache

* Add a listener to cache entry in the cache so as to
be notified of object changes.

* On notification, compute the difference i.e.,
changed attributes and refresh the object state

“remove” the object from the cache

Custom conflict resolver need to be implemented by
application

Partial (no change notification support)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Messaging provider’s persistent store

Send a special message to represent
creation of object by specific identity.

Send an event/message with changes
done to the object

Receive the message/event having
changes to attributes, refresh the
object state

Send a special message to represent
deletion of object by specific identity.

No support from messaging provider.
Each application instance need to
detect and resolve conflict

No

Data-store

“persist” the Entity in the database
through JPA

Start a transaction and update the
entity (object) in the database.

Through vendor specific means, listen
to changes to a “row” in database and
call EntityManager.refresh(“entity”)
to refresh object state

Start a transaction, call
EntityManager.remove(“entity”) to
delete the object from the database

Usually, database locks are used to
avoid conflicts.

Partial (no change notification
support, conflict resolution, need
transactions)

47

Eventual Consistency
Listening to changes

. . Microservice 2
Microservice 1
Object State Change Listener for
Employee
ObjectChangePropagationContext

setDept("Finance")

Employee.dept

oldValue - "HR"
newValue - "Finance"

- determine the list of changes
- propagate the changes to "source of truth"

- gets notification about change to employee
- notifies the "state change listener" implementation

Notify one or more microservices
that has registered for state
change notification of employee

Cache'/'Messaging /' Eventing system

‘ﬁ) JavaOne

[S ORACLE'

Resolving conflicts

.) Microservice 2
Microservice 1

ObjectChangePropagationContext ObjectChangePropagationContext

setDept("Finance") setDept(".T")

Framework
Framewqu > 4 tries fo
propagating
changes propagate
change

Cache / Messaging / Eventing system

Conflict Resolver for Employee

IdValue HR'

ii) actualValue “Finance"
iil) proposedValue "I.T"

RESOLVED VALUE: "Finance" §

Conflict detected: dept
changed from "HR" to
"|.T", but actual value is
"Finance" now

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

48

Benefits

* Object based state sharing model.

* No dependency on specific technology or vendor for the micro-service
code.

* Flexibility: A micro-service may decide

—how to “refresh” the state, through auto-refresh or listen to fine grained changes and
refresh

— Whether to “lock” and then update or not

— Whether to use “custom” conflict resolver or any framework provided conflict
resolver

‘ﬁ) JavaOne

I SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 49

&

‘ﬁ) JavaOne

<

ORACLE"

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

50

Java API for Configuration

* A new JSR to standardize Java EE application configuration definition,
access and management

* Inspired by
— Apache Tamaya
— Apache DeltaSpike
— Netflix Archaius
— Spring Configuration

* Proposed for JavaEE 8 and JavaEE 9
* Targeted for the cloud

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

51

Configuration APl Main Features
* Unified API

* Properties, xml an json formats
support out of the box t
* Externalized configuration :
] . . b - Configuration _
* Support of multiple configuration a
sources ’ I \

* Layering and overrides

Iiiiil

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

IHHHI

JSON

* Optional configuration schema

* Polling and Dynamic Properties

‘ﬁ) JavaOne

[S ORACLE'

52

Configuration APl Sample

Config config = ConfigProvider.getConfig() ;

// Returns "JavaOne"
String foo = config.getProperty("foo") ;

// Returns string "9"
String fooBar = config.getProperty("foo.bar") ;

// Returns null
String notExists = config.getProperty("not.exists") ;

// Returns string "default"

String notExistsDefault = config.getProperty('"not.exists",6 "default")

// Returns number 2016
Long fooBarBaz = config.getProperty("foo.bar.baz", Long.class);

éiJavaOne”

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

LS ORACLE

foo=JavalOne
foo.bar=9
foo.bar.baz=2016

53

!;) JavaOne

P ORACLE'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

SaaS MultiTenancy — Use Cases

* Tenant specific Ul customization
—e.g. display tenant specific logo on the Ul
— JSF based Ul composition at runtime

* Tenant specific data source
— e.g. connect to tenant specific DB

* Tenant specific security

‘ﬁ) JavaOne

LS ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

55

Tenant Context

* Container associates the inbound public interface TenantContext {
request to the Tenant and populate public String getTenantID () ;
the TenantContext public String getTenantName () ;
—e.g. use virtual server public void setProperty(String name,
* TenantContext holds information String vatue)

to |dent—|fy the Tenant public String getProperty (String

name) ;

—e.g. TenantlD, etc. public Map<String, String>

* Once populated, TenantContext getProperties () ;

can be used throughout by the }
application and the container to do
tenant specific processing

‘ﬁ) JavaOne

<= ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Multitenant Data Access

* Applications declare themselves as

@MultiTenant WINAN Tcnant A Tenant A
. . S

* Each tenant has its own data that is ——

separated and protected from other Multitenant

tenants Application
* MultiTenant application uses e

TenantContext to connect to tenant gl TcnantB Tenant Context

ﬁC DB enan ontex

SPec & Tenant B
* Runtime uses TenantContext to connect /

to and return tenant specific DB by

looking it up in a naming service Config

— Data source APIs may be enhanced to support E:g:ﬁgﬂ:ﬁ: Bg;

multitenancy via @MultiTenant to allow

containers to connect to tenant specific data
source automatically

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 57

!;) JavaOne

LS ORACLE'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Proposal for Security

Problem Statements

|ldentity could be from diverse
Ildentity stores

Authentication mechanism could
change between deployment
environments

OpenIDConnect is emerging as the
default authentication standard
Who Authenticated the user?

«ﬁ) JavaOne

—

ORACLE"

= Standard API for Identity Store Abstraction,

= Simple configuration to support changing Identity store

= Standard API for Authentication Mechanisms

= Extensible to support OpenIDConnect

= Security Context for Application to consistently
determine how the user was authenticated, groups,
roles

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

59

Java EE 9 Security

Areas for Exploration with EG

* Authorization Discover/publish OAuth Resources
— OAuth Client registration
— Authorization Interceptors
— Authorization Rules EL

* Token representations
— API to acquire tokens
— API to validate tokens

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

60

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Portable Java EE 9 Microservice
Common Application Requirements Across Different Java EE 9 Environments

Influence
Service
Placement

Service
Discovery

Define
Provisioning

Details S Portable
App

Ensure
Availability

éiJavaOne”

SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

High Level Architecture

Common cloud infrastructure

'Response Cache

T

"Logging
API| Gateway
raits.
Mobile '

l Service Registry puiiiebeies Service 3

Identity Service Host C

Service 1
'Host A

Router /

- Service 1
Host B

Load Balancer

c
o
=
©
(o))
)
e
(&2
(2]
<

App Balancer API

H Service 2

- -

!:() JavaOne

I Sorce Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 63

Java EE 9 Portable Application Requirements

Areas for exploration with EG for Spec drafts

Service Metadata

e Declare Required Resources (CPU, Memory, etc.)

e Describe Application Metadata
¢ Versioning Information for Routing and Discovery
e Dependency Information

e Service Grouping

Service Discovery

e Utilize consistent naming pattern to discover service dependencies
e Easily find Vendor Cloud Services with Injection/Auto Wiring

Availability

¢ Provide Health Check Method Through Metadata or Annotations
e Custom Service Performance Metrics Through Metadata or Annotations

!;) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 64

Summary

* Java EE 9 to bring standards around microservices and developing for the
cloud

— Enables portability of applications across multiple vendors
* Want to work with existing solutions and vendors

* Standardize commonly faced problems for developers in the new
environment

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

65

Next Steps

Give us your feedback

* Take the survey
— http://glassfish.org/survey

* Send technical comments to
— users@javaee-spec.java.net

* Join the JCP — come to Hackergarden in Java Hub
— https://jcp.org/en/participation/membership drive

* Join or track the JSRs as they progress
— https://java.net/projects/javaee-spec/pages/Specifications
* Adopt-a-JSR
— https://community.oracle.com/community/java/jcp/adopt-a-jsr

= lavaone Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

LS ORACLE

66

Where to Learn More at JavaOne

CON1558 What's New in the Java API for JSON Binding Monday 5:30 p.m.
BOF7984 Java EE for the Cloud Monday 7:00 p.m.
CON4022 CDI 2.0 Is Coming Tuesday 11:00 a.m.
CON7983 JAX-RS 2.1 for Java EE 8 Tuesday 12:30 p.m.
CON8292 Portable Cloud Applications with Java EE Tuesday 2:30 p.m.
CON7980 Servlet 4.0: Status Update and HTTP/2 Tuesday 4:00 p.m.
CON7978 Security for Java EE 8 and the Cloud Tuesday 5:30 p.m.
CON7979 Configuration for Java EE 8 and the Cloud Wednesday 11:30 a.m.
CON7977 Java EE Next — HTTP/2 and REST Wednesday 1:00 p.m.
CON6077 The lllusion of Statelessness Wednesday 4:30 p.m.
CON 7981 JSF2.3 Thursday 11:30 a.m.

‘ﬁ) JavaOne

<— SoACTE, Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 67

!:() JavaOne

LS ORACLE'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

