
About Faces:
The JavaServer™
Faces Framework

Edward Burns
Senior Staff Engineer
Sun Microsystems Inc.



2

Agenda – JavaServer™ Faces

• Is powerful
> Expressive power
> Integration power

• Is easy to use
> Inside tools
> “by hand”

• Has market and mindshare
> Industry support
> Adoption



3

“Simple things should be simple.
Complex things should be
possible.” Alan Kay

Faces: Expressive Power



4

Faces: Expressive Power

• We all talk about it, but do our tools really support
it?
> Model: managed-beans
> View: JSP (or other templating) pages
> Controller: Supporting framework

• Sometimes it's better to break the rules
> Prototyping: put everything in one page
> Throwaway projects

Model-View-Controller (MVC)



5

Faces: Expressive Power

• Built on JavaBeans concepts
> UIComponent hierarchy
>Properties
>Methods
>Events

> Event model
>Listener classes
>Event objects

• Combine with RenderKit concept

Rendering Technology Agnostic Component Model



6

Faces: Expressive Power

• Plain-Ole-Java-Objects – why bother extending
base classes or implementing interfaces?
• Expose or define your business logic with faces

managed-beans
• Entire object graph can be stated declaratively
• Exposed via the EL or directly through Servlet API

calls
• Lazy instantiation and setter injection

POJO Development and Dependency Injection (aka IoC)



7

Faces: Expressive Power

• Navigate your entire business logic object graph
• Set and Get operations: render and postback
• JavaBeans properties, Arrays, Lists, Maps,

Collections
• Implicit objects from Servlet environment: cookie,

headers, initParams
• Example:
> #{currentUser.prefs.sendSpam}
> #{products[i].suppliers.name.address}

Expression Language



8

Faces: Expressive Power
Separation of Roles by Skillset

Page
Author

Application
Developer

Component
Writer

Tool
Provider

JSF
Implementor

Application Extensions



9

Faces: the importance of integration



10

Faces: The Power of Integration

• JSP and JSTL: now works better than ever with
Faces
• Easy to integrate back-end logic
> java.sql.ResultSet and java.sql.RowSet
> Resources using the @Resource annotation (maybe)
> Portlet support: designed from the ground up with JSR-

168 in mind.

• Massivley extensible: nearly everything is overrideable,
delegatable, or decoratable



11

JSF Version History
• 1.0 on 11 March 2004
• 1.1 on 27 May 2004

JSF App

Servlets (2.3)

JSF API

JSF Tags

JSF App

JSP (1.2)
Portlet (1.0)

• Based on
J2EE 1.3
• Implemen-

tation bundled
with J2EE 1.4
SDK



12

JSF Version History
• 1.2 in Proposed Final Draft 25 August 2005

JSF App

Servlets (2.5)

JSF API

JSF Tags

JSF App

JSP (2.1)
Portlet (1.0)

• A core part of Java
EE 5

• Implemen-tation
bundled with
Glassfish, Sun's
open-source App
Server



13

Faces: The Power of Making it Easy
• Develop with a tool
• Develop “by hand” aka Emacs or vi.



14

Faces: Coding “by hand”

• No harder than with any other framework
• Simple login example:
<html>
<head>
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
</head>
<body>
<f:view>
<h:panelGrid columns=”2”>
name: <h:inputText value=”#{user.username}”/>
password: <h:inputText value=”#{user.password}” />

</h:panelGrid>
<h:commandButton action=”#{user.loginAction}”/>

</f:view></body></html>



15

Faces: Coding “by hand”

• Managed bean

public class User {
private String username;
private String password;
public void setUsername(String n) { this.username = n};
public void setPassword(String p) { this.password = p};
public String getUsername(void) { return username; }
public String getPassword(void) { return password; }
public String loginAction() {
if (validLogin) { return “success”; }
return “failure”;

}
}



16

Faces: Coding “by hand”

• Front page (after successful login)
<html>
<head>
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<%@ taglib uri=”http://java.sun.com/jstl/core” prefix=”c” %>
</head>
<body>
<f:view>
<f:subview><c:import url=”storeFrontPane.jsp”/>
</f:subview>

</f:view></body></html>



17

Faces: Coding “by hand”
• Config File
<managed-bean><managed-bean-name>user</managed-bean-name>
<managed-bean-class>User</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>
<navigation-rule>
<from-view-id>/login.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id> /storeFront.jsp </to-view-id>

</navigation-case>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id> /login.jsp </to-view-id>

</navigation-case>
</navigation-rule>



18

Faces: Industry Power
• Developer tools already mentioned
• Component libraries
> BusinessObjects Crystal Reports
> Oracle ADF Faces
> ILOG JViews Chart components

• Job postings: three pages of Faces related Jobs on
Monster.com

• Five books, from all the major publishers



19

What's next?
• Faces 1.2 and JSP 2.1 (in proposed final draft)
> Part of Java EE 5
> Dependent on JDK 1.5 / Servlet 2.5
> Done via transparent development on java.net
> Faces licensed with JDL/JRL
> New features – Unified EL
>Ultimately in Servlet spec or maybe JDK
> Bring new features from Faces 1.0/1.1 EL into JSP
> Align the webtier technologies
> Break out into seperate spec document under JSP 2.1 spec
>Defined in new javax.el package



20

What's next?

> Changes for Unified EL
> Page author experience changes:

– Existing apps still run without change via inspection of web.xml
version level

– Possible to escape “#{}” so JSP container doesn't touch it

> Java Developer experience changes:
– ELResolver replaces VariableResolver / PropertyResolver
– Legacy Variable/Property Resolvers still work

> Faces Implementor changes:
– Encouraged to use new EL APIs
– Leverage javax.el package



21

ELResolvers are
combined
together using
CompositeELResolvers,
to define rich semantics
for
evaluating an expression.

Pluggability was the
motivation for the
ELResolver
architecture.
● Spring
● Seam
● Shale



22

What's next?
• Other Faces 2.1 features (not all mentioned here):
> Wrappers for commonly decorated objects
> “binding” attribute for converter/validator/listener tags
> XML schema instead of DTD
> Additional “dir”, “lang” attributes for outputText, outputFormat,

messages, message
> PhaseListener must guarantee that if “beforePhase()” is

called, then “afterPhase()” must also be called
> UIViewRoot phaseEvents
> “caption” facet on DataTable
> Content interweaving
> Works perfectly with JSTL 1.2 (new version in Java EE 5)
> Tree pre-creation / Content interweaving
> Associating label with component for use in messages



23

What's next?
Resource Injection
• Access to JNDI resources through annotations

(@Resource, @EJB...) standardized
across Java EE
• @PostConstruct, @PreDestroy
• Servlets, Servlet Filters, Servlet Listeners
• Tag Handlers, JSP listeners
• Managed Beans



About Faces:
The JavaServer™ Faces
Framework

Ed Burns
ed.burns@sun.com


