
PresentationPresentation Goals

• Impart the knowledge to Impart the knowledge to
enable an educated decision enable an educated decision
about JSFabout JSF

• Teach enough to get started Teach enough to get started
on a JSF projecton a JSF project

• Show how to work with JSF Show how to work with JSF
for maximum productivityfor maximum productivity

Slide 2

Agenda
• Foundations

> Web Framework Classifications

> Four Pillars of JSF

> Design Patterns used in JSF

• Getting Stuff Done

> Getting Started

> Data Tables

> Spring and JSF

• Extending JSF

> UI Components

> non UI components

Slide 3

Too Many Frameworks!

Slide 4

Web Framework Classification

• Action Frameworks
> Struts, Struts2, Rails

• Hybrid Frameworks
> Tapestry, Wicket

• UI Component Frameworks
> JSF, Rife, Echo2

Slide 5

Web Framework Classification

Slide 6

Web Framework Classification

• You're all familiar with this kind of framework

• Write an action for each kind of interaction you offer
to the user

• Usually have to write a view for each action

• Sometimes have a direct mapping from URL
segments to actions and views
> http://server/controller/action/view

• Many implementations require subclassing
framework classes for actions and forms

Action Frameworks

Slide 7

Web Framework Classification

Slide 8

Web Framework Classification

• Can be said to offer the best of both worlds
> Tight mapping to HTTP in actions
> Reuse of components

• Still need to code up 1:1 relationship between
actions and views

• Some overhead for component state, but not for
controllers

Hybrid Component/Action Frameworks

Slide 9

Web Framework Classification

True UI Component Frameworks

Slide 10

Web Framework Classification

• Framework interacts directly with Components that
comprise the view

• Presence of view tree allows flexible traversal and
lifecycle

• Lots of overhead for stateful components

• Model dynamically referenced from components in
the view.

True UI Component Frameworks

Slide 11

Strengths and Weaknesses of JSF

Strengths

• Powerful

• Flexible

• Abstraction

• Tool support

• “Black Box” components
for the web

• I18N,L10N,A11Y

• Industry Standard

Weaknesses

• Complex, overkill in some
cases

• Different mind-set from
Action based frameworks

• Conceptually divorced from
HTTP

• JSP layer had problems
prior to JSF 1.2

• All stateful by default-
performance problem

Slide 12

Framework Classification Discussion

Slide 13

The Four Pillars of JSF

• How to author them?
> JSP: HTML or XML syntax
> Facelets: XHTML syntax

• What are they comprised of?
> UI Components exposed as markup tags
> Nesting of tags defines UI Component Hierarchy

>similar to DOM, but definitely not 1:1 with DOM

Views

Slide 16

The Four Pillars of JSF

• What are they comprised of?
> Static HTML Markup
> Template composition components

• UI Components grouped together into taglibs

• Can use JSTL with JSP based pages

• Can use JSP custom taglibs with JSP based pages

• How does JSF use views?
> one thing: build the UI Component tree

• Show Code of JSP and Facelet Views

Views

Slide 17

The Four Pillars of JSF: View

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

<f:view>
<html>
 <head><title><h:outputText value=”#{storeFront.title}” />
 </title></head>
 <body><h:form>
 <h1>Items from JSTL</h1>
 <c:forEach var="item" items="#{input}">
 <h:inputText value="#{item}"
 valueChangeListener="#{forEachBean1.valueChange1}"/>

 </c:forEach>
 <p>
 <h1>Items from JSF DataTable</h1>
 <h:dataTable var=”item” value=”#{input}”>
 <h:column>
 <h:inputText value="#{item}"
 valueChangeListener="#{forEachBean1.valueChange1}"/>

 </h:column>
 </h:dataTable>
 </h:form></body>
<!-- no closing html tag -->
</f:view>

JSP Standard Syntax: not necessarily well formed XML

Slide 18

The Four Pillars of JSF: View

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xml:lang="en" lang="en">
<jsp:output doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd"/>
<jsp:directive.page contentType="application/xhtml+xml;
charset=UTF-8"/>
<f:view>

<html><head><title>Hello</title></head>
<body bgcolor="white"><h:form>
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en_US" value="#{UserNumberBean.minimum}"/>
to <h:outputText value="#{UserNumberBean.maximum}"/>. Can you
guess it?</h2>
<p><h:inputText id="userNo" label="User Number"
 value="#{UserNumberBean.userNumber}"
 validator="#{UserNumberBean.validate}"/>
<h:commandButton id="submit" action="success" value="Submit"/></p>
</body>
</html>

</f:view>

JSP XML Syntax: well formed XML

Slide 19

The Four Pillars of JSF: View

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xml:lang="en" lang="en">
<f:view>

<html><head><ui:insert name="head"/></head>
<body bgcolor="white"><h:form>
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en_US" value="#{UserNumberBean.minimum}"/>
to <h:outputText value="#{UserNumberBean.maximum}"/>. Can you
guess it?</h2>
<p><h:inputText id="userNo" label="User Number"
 value="#{UserNumberBean.userNumber}"
 validator="#{UserNumberBean.validate}"/>
<h:commandButton id="submit" action="success" value="Submit"/></p>
</body>
</html>

</f:view>

Facelets: well formed XML

Slide 20

The Four Pillars
of JSF

Views -

UIComponent

Class Diagram

Slide 21

The Four Pillars of JSF

• UIComponent defines semantics of a UI
component

• Renderer defines appearance

• Each tag in the page is really a declaration of a
pairing of a UIComponent with a Renderer

• The choice to use the delegated rendering
approach is up to the component author

Views

Slide 22

Slide 24

Slide 25

The Four Pillars of JSF

• Use EL to “point to” properties of model objects from
UI Components

• UI Component will get its “value” from the
associated model property.

• Type safe conversion happens automatically

• Server side validation can happen if desired

• Model objects should only store converted and
validated data

• You are responsible for persisting model objects

Model Interaction - EL

Slide 26

The Four Pillars of JSF

• Model objects are POJOs, usually managed-beans

• Model objects can be “backing beans”: one per-
page, but are not required to be used in this way

• EL Expressions operate bi-directionally
> “read” or “get” when rendering
> “write” or “set” when posting back

• EL allows easy integration to technologies outside
of JSF: Spring, Seam, Hibernate, JNDI, etc

• UIData provides access to iterating over data

Model Interaction - EL

Slide 27

Spring Integration Example

• Model objects are POJOs, usually managed-beans

• Model objects can be “backing beans”: one per-
page, but are not required to be used in this way

• EL Expressions operate bi-directionally
> “read” or “get” when rendering
> “write” or “set” when posting back

• EL allows easy integration to technologies outside
of JSF: Spring, Seam, Hibernate, JNDI, etc

• UIData provides access to iterating over data

Model Interaction - EL

Slide 28

The Four Pillars of JSF

• EL implicit objects give access to web scopes and
more: cookie, facesContext, header, headerValues,
param, paramValues, request, requestScope, view,
application, applicationScope, initParam, session,
sessionScope

• Examples: #{requestScope.user.name}, #{prop}

• Widening scope lookup happens automatically

• Can introduce new implicit objects easily

• Takes full advantage of JavaBeans naming
conventions for getters, setters, arrays, lists.

Model Interaction - EL

Slide 29

The Four Pillars of JSF

• Can use EL in View markup

• Can use EL programmatically

• EL Can also point to component instances
> value style vs. component style

> Show code to illustrate use of EL in both styles

• EL can also point to methods

Model Interaction - EL

Slide 30

The Four Pillars of JSF

• The built in Inversion of Control framework for JSF

• Can replace or supplement JSF managed beans
with Spring Framework

• Managed beans accessed via EL are created lazily
by the framework and placed into the proper
“scope”: none, request, session, application

• Can use Java EE 5 Resource Injection into
Managed Beans

• Show code for managed-beans

Model Interaction – Managed Beans

Slide 31

View and Model Interaction
Discussion

Slide 32

The Four Pillars
of JSF

Slide 33

The Four Pillars of JSF

Navigation

Slide 34

The Four Pillars of JSF

• Pre-Ajax (and even post-Ajax) web apps are a
modeled very well as a directed graph of web
pages.

• The valid traversal paths for the graph can be
modeled as page navigation

• JSF has a simple yet flexible navigation model that
enables centralizing the navigation rules for the
entire application in one place, yet allows easily
changing these rules so the valid traversal paths are
changed.

Navigation

Slide 35

The Four Pillars of JSF

• Every ActionSource component can cause a
page transition to occur based on the “outcome”
> A literal string hard coded in the page

> Using the EL to point to a method that takes no
arguments and returns an Object that has a reasonable
toString()

• No limit on the number of ActionSource
components in a page.

• Each one can return a different outcome

• A null outcome means, “stay on the current view”

Navigation

Slide 36

The Four Pillars of JSF

• The outcome is fed into a rule base and combined
with the current viewId to derive where to go next,
and how to get there. Example:

 <navigation-rule>

 <from-view-id>/chooseLocale.jsp</from-view-id>

 <navigation-case>

 <description>

 Any action on chooseLocale should cause navigation to

 storeFront.jsp

 </description>

 <from-outcome>storeFront</from-outcome>

 <to-view-id>/storeFront.jsp</to-view-id>

 <!-- <redirect /> -->

 </navigation-case>

 </navigation-rule>

Navigation

Slide 37

The Four Pillars
of JSF

Slide 38

The Four Pillars of JSF

• The Lifecycle dictates how an incoming request is
handled and how a response is generated.

• Primarily concerned with
> Finding the View on which to operate
> Allowing components to get their values
> Ensuring the values are converted and validated
> Ensuring any event listeners are called
> Updating the model
> Selecting and rendering the new view

Lifecycle

Slide 39

The Four Pillars of JSF

• You don't need to invoke the Lifecycle yourself

• Two methods
> execute

Handles the postback processing for the request
> render

Renders the view

• Each method uses a number of “phases” to
accomplish its task.

Lifecycle

Slide 40

“execute”

portion of Lifecycle

“render”

portion of Lifecycle

The Four Pillars of JSF
Lifecycle

Slide 41

The Four Pillars of JSF

• You can install PhaseListeners into the
Lifecycle to do whatever you want before or after
each or every phase.

• A PhaseListener has full access to the entire
JSF framework, including manipulation of the view.

• You can use decoration to provide your own
Lifecycle if you want.

Lifecycle

Slide 42

Design Patterns at work in JSF

• Decorator
> Used throughout to allow customization

• Singleton
> FacesServlet, Lifecycle, ViewHandler, RenderKit,

• Strategy
> Flexible Rendering model

• Template Method
> PhaseListeners

• Observer
> java.util.EventListener

Slide 43

Navigation, Lifecycle and Design
Patterns Discussion

Slide 44

Gettings Things Done

• Getting Started

> How to “get in” to JSF

> Config files you need

> Really Simple App

• Getting Real (thanks DHH)

> Listeners

>ActionListener

>ValueChangeListener

> Tables

> Spring Integration

Slide 45

How to “get in” to JSF

• Map the FacesServlet to whatever

• Browser makes a GET that triggers the mapping

• FacesServlet fires up the Lifecycle and hands
control to it

• Lifecycle hits Render Response phase, renders
view

• Browser makes one or more POST requests which,
by virture of having been rendered by JSF, will
automatically hit the FacesServlet.

Slide 46

Config Files you need

• WEB-INF/web.xml
> Required for declaring FacesServlet

> Optionally map FacesServlet

> Optionally pass init params to JSF runtime
> State saving method

> Alternate Lifecycle

> XML validation of faces-config files

> Implementation specific options

> Anything else for which you normally use web.xml
> Resource declarations

> Security options

Slide 47

Config Files you need

• WEB-INF/faces-config.xml
> Don't need it for really simple apps without:

managed-beans, non-jarred {components, converters, validators,
renderers, etc}, navigation

> Declares
any non-jarred JSF artifacts, Example: j1 app

navigation-rules

• Let's look at the DTD (schemas are not human
readable!)
> For regular apps that don't need to extend, all you really

need to know is managed beans

> We'll cover the rest later.

Slide 48

Simple Toy App

web/WEB-INF/web.xml

web/WEB-INF/faces-config.xml

web/index.html

web/greeting.jsp

web/response.jsp

web/wave.med.gif

src/helloDuke/UserNameBean.java

helloDuke - files

Slide 49

Getting Real

• General use:
> MethodExpression in view

<bp:scroller for="datagrid"
actionListener="#{orderEnt.scrollDataGrid}">

> Java code on managed bean
public void scrollDataGrid(ActionEvent e) {

 if (this.data != null) {

 int rows = this.data.getRows();
if (rows < 1) return;
if (currentRow < 0)
 this.data.setFirst(0);
else if ...}

}

Listeners - ActionListener

Slide 50

Getting Real

• Also have f:actionListener tag

• Names an actual class that must implement
ActionListener

• Example: J1 order entry scroller

Listeners - ActionListener

Slide 51

Getting Real

• General use:
> MethodExpression in view

<a:ajax name="dojo.fisheye"

 value="#{bean.selectedIndex}"

valueChangeListener="#{bean.valueChanged}"/>

> Java code on managed bean
public void valueChanged(ValueChangeEvent e) {

 ... do something with the event

}

Listeners - ValueChangeListener

Slide 52

Getting Real

• Also have f:valueChangeListener tag

• Names an actual class that must implement
ValueChangeListener

• Example: Dojo Fisheye widget

Listeners - ActionListener

Slide 53

Getting Real

• Use <h:dataTable value=”#{foo.dataModel}” />
> #{foo.dataModel} points to an instance of
javax.faces.model.DataModel

>Which has subclasses:
ArrayDataModel, ListDataModel,

ResultDataModel (JSTL Result),
ResultSetDataModel (java.sql.ResultSet),
ScalarDataModel (wraps Java Object)

> #{foo.dataModel} points to an array, List, Result
(JSTL), ResultSet, Object. In this case, DataModel
instance is constructed automatically

Displaying Tabular Data

Slide 54

Getting Real

• Example: Order Line system from J1 demo

Displaying Tabular Data

Slide 55

Getting Real

• Replace JSF's managed-bean facility with Spring
via the SpringVariableResolver.

• Use JSF and Spring MVC together in the same
application

• Replace JSF's navigation facility with Spring Web
Flow via a custom Navigation Handler (prototype
concept!)

Spring Integration Options

Slide 56

Listeners, Tables, Spring Integration

Slide 57

Extending JSF
• UI Components

> Without delegated
rendering

> With delegated rendering

• Non-UI Components

ActionListener,ELResolver,

{Variable,Property}Resolver,

FacesContextFactory,

RenderKit,

NavigationHandler,

ViewHandler

• Packaging components

Slide 58

Custom UI Components

• Extend UIComponent or UIComponentBase

• Important methods
> encode*(), decode(), saveState(), restoreState()

• Declare component in faces-config.xml
<component>

 <component-type>Chart</component-type>

 <component-class>com.foo.ChartComponent

 </component-class>

</component>

Without Delegated Rendering

Slide 59

Custom UI Components

• Extend UIComponent or UIComponentBase

• Do not implement encode*() or decode*()

• Important methods
> saveState(), restoreState()

• Component declaration same as before

• Extend Renderer

With Delegated Rendering

Slide 60

Custom UI Components

• Extend Renderer

• Show MapRenderer

• Declare in faces-config.xml
<render-kit>

 <renderer>

 <component-family>ProgressBar</component-family>

 <renderer-type>ProgressBar</renderer-type>

 <renderer-class>com.foo.ChartRenderer

</renderer-class>

</renderer>

</render-kit>

With Delegated Rendering

Slide 61

Custom Non-UI Components

• ActionListener,ELResolver,

{Variable,Property}Resolver,

FacesContextFactory,

RenderKit,

NavigationHandler,

ViewHandler

• Back to the DTD

Slide 62

Packaging components in a JAR

• Key concept:

JSF Runtime must look for

META-INF/faces-config.xml file in every JAR file in
WEB-INF/lib

at web app deployment time

• Wide range of COTS components (both UI and non-
UI)
> see JSFCentral.com

Slide 63

Summary
• JSF is a component based

framework

• JSF is easy to understand if
you know the fundamentals
> View

> Model Interaction

> Navigation

> Lifecycle

• https://javaserverfaces.dev.java.net/

The Best of Both Worlds

Slide 64

