
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 1

JMS and WebSocket for
Lightweight and Efficient
Messaging

Ed Bratt

Senior Development Manager, Oracle

Amy Kang

Consulting Member Technical Staff, Oracle

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 3

“Safe Harbor Statement”

The following is intended to outline our general product direction. It is

intended for information purposes only, and may not be incorporated into

any contract.

It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality

described for Oracle’s products remains at the sole discretion of Oracle.

… please note

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 4

Today’s Agenda

 About JMS and JMS 2.0

 Web Scale Messaging with JMS?

 Components for WebSocket and JMS

 Extending Open MQ for WebSocket

 Messaging via WebSocket - Client Code Samples

 Pulling it all together

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 5

Java Message Service
(JMS) and Messaging

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 6

JMS 101

 JMS is a Java API for message exchange between systems and
applications

– Provides point to point, as well as publish and subscribe distribution

– Messaging is asynchronous between producers and consumers

– Producers and consumers are loosely coupled

– Provides a rich array of service quality options

 From “Fire and Forget” to Guaranteed, once and only once

 And a range of options in between

 API is defined by a published standard for Java

– Can be emulated for other languages

JMS – Java Message Service

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 7

JMS 101

 Java clients send and receive messages using a JMS run-time

 The JMS Runtime coordinates with the JMS Server (or Broker)

 JMS Servers provide

– Destination management

– Message routing

 With or without selectors

– Persistence

– Some offer enhanced availability

– An array of additional features

… continued

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 8

JMS Java Application

Java Client and JMS Server
An N-Tier client – server technology

JMS Client

GlassFish MQ Server

(Broker)

TCP TCP

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 9

JMS 2.0

 Simplified Programming Interface (API)

– An easier-to-use upgrade from the JMS 1.1 API

– Introduces JMSContext, JMSProducer, JMSConsumer

– @Inject JMSContext (Java Enterprise Edition, only)

 Additional new features, including

– Asynchronous send

– Delivery delay

– Shared topic subscriptions

 More in the JMS 2.0 Spec, or in the Java EE 7 tutorial

 Nigel Deakin’s talk on Tuesday (CON5919)

First update to JMS API since version 1.1 in 2001

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 10

HTML5 – New Demands on Clients

 Clients now pull multiple streams onto a single page

– Client pages look more and more like a full fledged applications

 These clients may benefit from messaging

 HTML5 adds WebSocket and a JavaScript interface for WebSocket

 Support in browsers is approaching ubiquity

– Most browsers already support WebSocket

– … including mobile browsers (though not everywhere)

 Many talks here on HTML5 – take your pick

Allows for rich web pages – client applications

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 11

Web-Scale Messaging With
JMS

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 12

Messaging, Direct to Web Clients

 JMS is a rich API

– Using JMS can be a complex development effort ... Albeit less so, with the

introduction of JMS 2.0

 HTTP is the most common protocol for moving data across the web

– However it is unidirectional

 Bi-directionality can be simulated by polling

– Which is expensive and adds complexity to clients and servers

 This can be a challenge to scaling out JMS deployments to web clients

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 13

Client and server

exchange messages and

control information

across their connection

Most use-cases require bi-directional
communication

Send

Persist

Receive
Ack

Send

Persist

Receive
Ack

Client Server

T

i

m

e

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 14

Clients must poll to

determine when the

server has completed the

request.

This takes resources of

both the client and

server.

This has serious scaling

implications.

Two-Way Simulation Via HTTP

Send

Persist

Poll for
Ack

Send

Persist

Receive
Ack

Client Server

T

i

m

e

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 15

HTTP Tunnel Servlet
As delivered in GlassFish Message Queue

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 16

Components for
WebSocket and JMS

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 17

WebSocket

 “WebSocket is a web technology providing full-duplex communications

channels over a single TCP connection. The WebSocket protocol was

standardized by the IETF …” – Wikipedia, August 2013

 A WebSocket connection handshake starts as an HTTP upgrade

request, then the half-duplex HTTP connection is upgraded to a full-

duplex connection via a standardized protocol

 WebSocket provides a mechanism for two-way communication

between web clients and servers that does not require multiple HTTP

connections

Some basics

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 18

WebSocket is also part of Java EE 7

 JSR356 provides an API to

– Create and configure server and client endpoints

– Create either programmatic endpoints as well as annotated endpoints.

– The client API enables any Java application to access remote WebSocket

endpoints (server).

 Examples for Java EE 7 WebSocket integration were given at the

Hand’s on Lab HOL2147 (Tuesday … Sorry if you missed it)

– Can download from http://glassfish.org/hol

JSR356 Java API for WebSocket

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 19

Tyrus

 Project Tyrus is the Reference Implementation for JSR 356

 Reference Implementation of WebSocket for Java EE 7

– https://tyrus.java.net

 Provides support in Java EE 7 Reference Implementation (GlassFish)

 Also as a stand-alone component for custom components

– https://tyrus.java.net/documentation/1.2.1/index/getting-started.html

The Reference Implementation for JSR 356

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 20

Grizzly
Provides scalable framework, utilizing Java NIO

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 21

Grizzly

 “The Grizzly NIO and Web framework has been designed to help

developers to take advantage of the Java™ NIO API. Grizzly's goal is

to help developers to build scalable and robust servers using NIO”

 Grizzly is used in

– GlassFish Enterprise Server

– GlassFish Message Queue (Open MQ)

– Tyrus

– Others …

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 22

Extending Open MQ for
WebSocket – Putting It
Together

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 23

Extending to WebSocket

 Existing JMS client runtime and JMS broker communicates via TCP

 Grizzly provides many transports including

– TCP/TLS

– WebSocket (ws) or Secure WebSocket (wss)

 Tyrus provides Java API for implementation WebSocket

 We can use Grizzly and Tyrus to simplify the task of adding support for

WebSocket

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 24

JMS over HTTP Implementation
Servlet Tunneling

GlassFish MQ

Broker Tunneling Servlet

HTTP TCP

JMS Application

HTTP
JMS Client

runtime
TCP

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 25

Java Application
 GlassFish MQ JMS

Runtime provides

complete JMS API

 … and includes the Tyrus

provider as well

Extending the JMS Client Runtime

JMS Client Runtime

WebSocket Connection

Handler

Java API for WebSocket

Tyrus Implementation

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 26

Extending the Server

 Grizzly provides a WebSocket API

 - Send data to a remote end-point

 - Listen for events occurring on a WebSocket instance

 Grizzly defines

– WebSocketApplication

 for creating/implementing a server-side WebSocket application

– WebSocketEngine

 to register/unregister WebSocketApplication

 JMS Broker is extended to provide WebSocket connection service(s)

JMS Broker

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 27

Extending the Server
JMS Broker - WebSocket Architecture

GlassFish MQ

(Broker)

Broker WebSocket Connection Service

Grizzly

WebSocket

Engine

MyWebSocketApp

AnotherWSApp

…

Grizzly

HTTPServer

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 28

JMS over WebSocket
GlassFish MQ

(Broker)

Broker WebSocket Connection

Service

Grizzly

WebSocket

Engine

JMSWebSocket

Grizzly

HTTPServer

Java* Application

JMS Client Runtime

WebSocket Connection

Handler

Java API for WebSocket

Tyrus Implementation

*Including JavaFX applications

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 29

STOMP over WebSocket

 STOMP is a simplified message exchange protocol

“STOMP provides an interoperable wire format so that STOMP clients can
communicate with any STOMP message broker to provide easy and
widespread messaging interoperability among many languages, platforms and
brokers.” – stomp.github.io, Aug. 2013

 Stomp is a protocol which can be implemented via any transport, which
can support the required semantics

 Available from: http://stomp.github.io/

– About 16 languages listed http://stomp.github.io/implementations.html

 Note: STOMP is not JMS but many JMS providers support STOMP

Streaming Text Oriented Messaging Protocol

http://stomp.github.io/

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 30

HTML5 Application using

WebSocket

STOMP over WebSocket

STOMP

Protocol

JavaScript

WebSocket

API

GlassFish MQ

(Broker)

Broker WebSocket Connection Service

Grizzly

WebSocket

Engine

STOMPWebSocket

Grizzly

HTTPServer

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 31

JSON and Messaging over WebSocket

“JSON (JavaScript Object Notation) is a lightweight data-interchange

format. It is easy for humans to read and write. It is easy for machines

to parse and generate. It is based on a subset of the JavaScript

Programming Language, Standard ECMA-262 3rd Edition - December

1999” – JSON.org, Aug. 2013

 Language independent

– Supported in C/C++, Perl, Python, Etc.

– 58 languages listed at json.org

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 32

HTML5 Application using

WebSocket

WebSocket and JSON, JMS
GlassFish MQ

(Broker)

Broker WebSocket Connection

Service

Grizzly

WebSocket

Engine JSONWebSocket

Grizzly

HTTPServer

JSON Format

for STOMP

Protocol

JavaScript

WebSocket

API

JSON Processing

API

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 33

WebSocket Architecture
Provides an array of WebSocket messaging options

JMS Java Clients

JSON Clients

STOMP Clients

GlassFish MQ

(Broker)

Broker WebSocket Connection

Service

Grizzly

WebSocket

Engine

JMSWebSocket

STOMPWebSocket

JSONWebSocket

Grizzly

HTTPServer

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 34

WebSocket Benefits

 Greater throughput

– At least 2x improvement

… based on simple HTTP / SOAP comparison tests on developer class

systems

 Less to manage

– No intermediary

 Fewer resources

– No polling … all the way around

Compared to HTTP

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 35

Messaging via WebSocket
– Client Code Samples

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 36

Java JMS over WebSocket

ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();
cf.setProperty(ConnectionConfiguration.imqAddressList,
"mqws://mybrokerhost:7670/wsjms")
JMSContext ctx = cf.createContext();

//Send a message to 'myQueue'
JMSProducer producer = ctx.createProducer();
producer.send(ctx.createQueue("myQueue"), ctx.createTextMessage(msg));

//Receive a message from 'myQueue'
JMSConsumer consumer = ctx.createConsumer(ctx.createQueue("myQueue"));
TextMessage textMessage = (TextMessage)consumer.receive();
String payload = textMessage.getText();
System.out.println("Received message: "+payload);

//Close the JMSContext
ctx.close();

Java programs are relatively unchanged

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 37

JavaScript for STOMP over WebSocket

 Open a WebSocket connection and setup event handlers

var wsUri = "ws://myServer.com:7670/wsjms/mqstomp";

websocket = new WebSocket(wsUri);

websocket.binaryType="blob";

websocket.onopen = function(evt) { onOpen(evt) };

websocket.onclose = function(evt) { onClose(evt) };

websocket.onmessage = function(evt) { onMessage(evt) };

websocket.onerror = function(evt) { onError(evt) };

 onOpen handler (etc.)

 function onOpen(evt) {

 // Process Open event (e.g. write message to screen)

 }

ws://myServer.com:7670/wsjms/mqstomp

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 38

JavaScript for STOMP over WebSocket

 Send a STOMP CONNECT frame to broker:
var NULL = '\x00';
websocket.send("CONNECT\nlogin:guest\npasscode:guest\n

accept-version:1.2\n\n"+NULL);

 Send a message to broker on Queue ‘myQueue' using STOMP SEND frame
websocket.send("SEND\ndestination:/queue/myQueue\n\n
This is a message from websocket client. #"+nmsg+"\n“
+NULL);

 Create a subscriber on Queue ‘myQueue' to receive messages from broker using
STOMP SUBSCRIBE frame
sendData("SUBSCRIBE\ndestination:/queue/myQueue\n
id:mysubid\n\n“+NULL);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 39

JavaScript for STOMP over WebSocket

 Using WebSocket onMessage() to listen for data sent from broker
function onMessage(evt) {

 //process evt.data

}

 Unsubscribe the subscriber and disconnect:
websocket.send("UNSUBSCRIBE\ndestination:/queue/myQueue\n

id:mysubid\n\n"+NULL);

websocket.send("DISCONNECT\n\n"+NULL);

websocket.close()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 40

JavaScript for JSON over WebSocket

 Open a WebSocket connection and setup event handlers:
var wsUri = "ws://myServer.com:7670/wsjms/mqjsonstomp";

websocket = new WebSocket(wsUri);

websocket.onopen = function(evt) { onOpen(evt) };

websocket.onclose = function(evt) { onClose(evt) };

websocket.onmessage = function(evt) { onMessage(evt) };

websocket.onerror = function(evt) { onError(evt) };

 onOpen handler (etc.):
function onOpen(evt) {

 //Process Open event (e.g. write to screen)

}

ws://joe-s10-3.us.oracle.com:7670/wsjms/mqjsonstomp

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 41

JavaScript for JSON over WebSocket

 Send a STOMP CONNECT frame to broker:

 var jmsframe = {};

 jmsframe.command = "CONNECT";

 jmsframe.headers = {"login":"guest“,

 "passcode":"guest", "accept-version":"1.2"};

 var data = JSON.stringify(jmsframe)

 websocket.send(data);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 42

JavaScript for JSON over WebSocket

 Send a message to broker on Queue 'myQueue' using STOMP SEND
frame:

var jmsframe = {}

jmsframe.command = "SEND";

jmsframe.headers = {"destination":"/queue/myQueue"};

jmsframe.body = {"text": "This is a message from

websocket json client"};

var data = JSON.stringify(jmsframe);

websocket.send(data);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 43

JavaScript for JSON over WebSocket

 Create a subscriber on Queue 'myQueue' to receive messages from broker
using STOMP SUBSCRIBE frame:

 var jmsframe = {};
jmsframe.command = "SUBSCRIBE";

jmsframe.headers =

 {"destination":"/queue/myQueue", "id":"mysubid"};

var data = JSON.stringify(jmsframe);

websocket.send(data);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 44

JavaScript for JSON over WebSocket

 Using WebSocket onMessage() to listen for data sent from broker:

function onMessage(evt) {

 var jmsframe = JSON.parse(evt.data);

 //process jmsframe.command

 //process jmsframe.headers

 //process jmsframe.body

}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 45

JavaScript for JSON over WebSocket

 Unsubscribe the subscriber and disconnect:

var jmsframe = {};
jmsframe.command = "UNSUBSCRIBE";
jmsframe.headers = {"destination":"/queue/myQueue", "id":"mysubid"};
var data = JSON.stringify(jmsframe);
websocket.send(data);

jmsframe = {};
jmsframe.command = "DISCONNECT";
jmsframe.headers = {"receipt-id":"mydisconnectid"};
data = JSON.stringify(jmsframe);
websocket.send(data);
websocket.close()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 46

Pulling it all together

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 47

Which to use?

 JMS Java API provides the richest control

– However, the client must be a Java application or use the product specific

protocol

– Requires a JMS client runtime

 STOMP – Easy integration with many different languages and different

messaging servers

 JSON – Probably the most natural for direct implementation in HTML5

clients

– Has the most language supported

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 48

Try it

 Download the latest promoted build of Open MQ

https://mq.java.net/5.0.1

 Instructions for using WebSocket with Java, STOMP, and JSON-

STOMP are provided

https://mq.java.net/5.0.1

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 49

Open Message Queue

 New shared thread-pool implementation in broker

– As before, set threadpool_model=shared to enable

 Uses Grizzly NIO framework

 Supports SSL (previously only for threadpool_model=dedicated)

 Shared threads more scalable at a cost to performance

 Improved support for DB reconnection with JDBC databases

– In the Message Queue JDBC Connection Pool

 C Client extended with some new JMS 2.0 features

– Shared subscriptions (durable & non-durable), Delivery delay

New features, unrelated to JMS 2.0

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 50

Summary

 JMS provides a rich Java API for systems to use for coordination

 JMS 2 extends the API by providing a simplified API as well as new
features

 WebSocket extends HTTP and provides full-duplex connection providing a
better throughput, over HTTP, to a variety of clients including HTML5

 Grizzly simplifies the system side coding

 Tyrus provides reference implementation for the standard Java API for
WebSocket

 WebSocket provides direct integration with your JMS server – with JMS
over WebSocket; STOMP over WebSocket, and STOMP via JSON over
WebSocket

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 51

Where to go for more information

 Open MQ Project – https://mq.java.net

– Download Open MQ 5.0.1 Milestone and try using JMS over WebSocket

 GlassFish – http://glassfish.org

– Java EE Tutorial: http://docs.oracle.com/javaee/7/tutorial/doc/home.htm

 Grizzly Project – https://grizzly.java.net

 Tyrus Project – https://tyrus.java.net

 STOMP – http://stomp.github.io

 JSON – http://json.org

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 52

Questions?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 53

Graphic Section Divider

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | CON-7777, JMS and WebSocket for Lightweight and Efficient Messaging 54

