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License
ORACLE AMERICA, INC. IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT. PLEASE READ
THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS
SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS PAGE.

Specification: JSR-375 Java EE Security API ("Specification")

Version: 1.0

Status: Final Release

Specification Lead: Oracle America, Inc. ("Specification Lead")

Release: August 2017

Copyright 2017 Oracle America, Inc.
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive,
non- transferable, worldwide, limited license (without the right to sublicense), under Specification
Lead’s applicable intellectual property rights to view, download, use and reproduce the
Specification only for the purpose of internal evaluation. This includes (i) developing applications
intended to run on an implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with
any third party; and (iii) excerpting brief portions of the Specification in oral or written
communications which discuss the Specification provided that such excerpts do not in the
aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a
perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or, subject to the provisions of
subsection 4 below, patent rights it may have covering the Specification to create and/or distribute
an Independent Implementation of the Specification that: (a) fully implements the Specification
including all its required interfaces and functionality; (b) does not modify, subset, superset or
otherwise extend the Licensor Name Space, or include any public or protected packages, classes,
Java interfaces, fields or methods within the Licensor Name Space other than those
required/authorized by the Specification or Specifications being implemented; and (c) passes the
Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users
Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is
expressly conditioned on your not acting outside its scope. No license is granted hereunder for any
other purpose (including, for example, modifying the Specification, other than to the extent of your

1



fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or
to any trademarks, service marks, or trade names of Specification Lead or Specification Lead’s
licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or
any other particular "pass through" requirements in any license You grant concerning the use of
your Independent Implementation or products derived from it. However, except with respect to
Independent Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass through to your
licensees any licenses under Specification Lead’s applicable intellectual property rights; nor (b)
authorize your licensees to make any claims concerning their implementation’s compliance with
the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above
that would be infringed by all technically feasible implementations of the Specification, such
license is conditioned upon your offering on fair, reasonable and non-discriminatory terms, to
any party seeking it from You, a perpetual, non-exclusive, non-transferable, worldwide license
under Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant
Implementation.

b. With respect to any patent claims owned by Specification Lead and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided in a
technically feasible manner when implementing the Specification, such license shall terminate
with respect to such claims if You initiate a claim against Specification Lead that it has, in the
course of performing its responsibilities as the Specification Lead, induced any other entity to
infringe Your patent rights.

c. Also with respect to any patent claims owned by Specification Lead and covered by the license
granted under subparagraph 2 above, where the infringement of such claims can be avoided in
a technically feasible manner when implementing the Specification such license, with respect
to such claims, shall terminate if You initiate a claim against Specification Lead that its making,
having made, using, offering to sell, selling or importing a Compliant Implementation infringes
Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an
implementation of the Specification that neither derives from any of Specification Lead’s source
code or binary code materials nor, except with an appropriate and separate license from
Specification Lead, includes any of Specification Lead’s source code or binary code materials;
"Licensor Name Space" shall mean the public class or interface declarations whose names begin
with "java", "javax", "com.oracle", "com.sun" or their equivalents in any subsequent naming
convention adopted by Oracle America, Inc. through the Java Community Process, or any
recognized successors or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall
mean the test suite and accompanying TCK User’s Guide provided by Specification Lead which
corresponds to the Specification and that was available either (i) from Specification Lead’s 120 days
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before the first release of Your Independent Implementation that allows its use for commercial
purposes, or (ii) more recently than 120 days from such release but against which You elect to test
Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not
represent any commitment to release or implement any portion of the Specification in any product. In
addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE
SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. You will indemnify, hold harmless, and defend Specification Lead
and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use
or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later
versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions)
and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-
up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose.
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GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal
law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import
regulations in other countries. Licensee agrees to comply strictly with all such laws and regulations
and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as
may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment,
or other communication between the parties relating to its subject matter during the term of this
Agreement. No modification to this Agreement will be binding, unless in writing and signed by an
authorized representative of each party.
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Preface
This document is the Java EE Security API Specification, version 1.0.

Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC
2119, "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

Other documents referenced by this specification are identified by name on first use, and thereafter by
a short abbreviation. The "Bibliography" section at the end of this document provides full references.
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Chapter 1. Concepts and General
Requirements
This chapter provides overview information and terminology related to this specification, and also
includes general requirements not specified elsewhere in this document.

1.1. Terminology And Acronyms
A common understanding of security-related terms is helpful for discussion or specification of security
APIs. To that end, we incorporate by reference the excellent Apache Shiro Terminology [SHIROTERM],
and define some additional terms used in this document.

Authentication Mechanism

The mechanism by which authentication is performed. This mechanism interacts with the caller to
obtain credentials and invokes an identity store to match the given credentials with a known user
(identity). If a match is found, the Authentication Mechanism uses the found identity to populate
attributes (principals) to build an authenticated Subject. If a match is not found, the Authentication
Mechanism reports a failed authentication, the caller is not logged in, and is unable to be given
authorization.

Caller, Caller Principal

A caller is a user that is making a request to an application, or invoking an application API. A Caller
Principal is a Principal object representing that user. This specification uses the term caller in
preference to the term user in most contexts.

HAM

Abbreviation for HttpAuthenticationMechanism, an interface defined by this specification.

Identity Store

An Identity Store is a component that can access application-specific security data such as users,
groups, roles, and permissions. It can be thought of as a security-specific DAO (Data Access Object).
Synonyms: security provider, repository, store, login module (JAAS), identity manager, service
provider, relying party, authenticator, user service. Identity Stores usually have a 1-to-1 correlation
with a data source such as a relational database, LDAP directory, file system, or other similar
resource. As such, implementations of the IdentityStore interface use data source-specific APIs to
discover authorization data (roles, permissions, etc), such as JDBC, File IO, Hibernate or JPA, or any
other Data Access API.

JACC

JSR-115, "Java Authorization Contract for Containers", version 1.5 [JACC].

JASPIC

JSR-196, "Java Authentication SPI for Containers", version 1.1 [JASPIC].
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SAM

Abbreviation for ServerAuthModule, an interface defined by JASPIC.

1.2. General Requirements
The following general requirements are defined by this specification.

1.2.1. Group-To-Role Mapping

Various Java EE specifications define how roles are declared for an application, and how access to
application resources can be restricted to users that have a specific role. The specifications are largely
silent on the question of how users are assigned to roles, however. Most application servers have
proprietary mechanisms for determining the roles a user has.

Application servers MUST provide a default mapping from group names to roles. That is, a caller who
is a member of group "foo" is considered to have role "foo". This default mapping MAY be overridden
by explicit proprietary configuration, but, when not overridden, provides sensible and predictable
behavior for portable applications.

An application server MAY provide a default mapping from caller principal names to roles. That is, a
caller with the name "bar" is considered to have role "bar". This default mapping MAY be overridden
by proprietary configuration.

1.2.2. Caller Principal Types

This specification defines a principal type called CallerPrincipal to represent the identity of an
application caller. Historically, application servers have used different principal types to represent an
application’s callers, and various Java EE specifications (e.g., JASPIC), provide abstractions to
accommodate, "the container’s representation of the caller principal".

This specification RECOMMENDS that Java EE application servers that rely on container-specific caller
principal types derive those types by extending CallerPrincipal, so that portable applications can rely
on a consistent representation of the caller principal.

However, we also distinguish here between a "container caller principal" and an "application caller
principal", and explicitly allow for each to be represented by a different Principal type.

The container caller principal is a Principal that the container uses to represent a caller’s identity. An
implementation of this specification MAY choose any Principal type for this purpose. The type chosen
may carry additional information, or provide unique behaviors.

An application caller principal is a Principal that an application, or an implementation of, e.g., an
HttpAuthenticationMechanism, uses to represent a caller’s identity. An application MAY choose any
Principal type for that purpose. The type chosen may carry additional information, or provide unique
behaviors.
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Because both containers and applications can have legitimate requirements for specific Principal types
to represent a caller, and those types may differ, it MUST be possible for the container to establish both
the container’s and the application’s caller principal as the caller’s identity; for example, by including
both in a Subject representing the caller.

When both a container caller principal and an application caller principal are present, the value
obtained by calling getName() on both principals MUST be the same.

When no specific application caller principal is supplied during authentication, the caller’s identity
should be represented by a single principal, the container’s caller principal.

1.2.3. Expression Language Support

This specification defines a number of annotations:

DatabaseIdentityStoreDefinition
LdapIdentityStoreDefinition

BasicAuthenticationMechanismDefinition
CustomFormAuthenticationMechanismDefinition
FormAuthenticationMechanismDefinition

LoginToContinue
RememberMe

Attributes on these annotations can be provided either as actual values, or as Expression Language 3.0
expressions. In cases where the return type of an attribute is not String, an "EL alternative" attribute is
provided, with "Expression" appended to the name. If an "EL alternative" attribute has a non-empty
value, it takes precedence over the attribute it’s an alternative to, and must contain a valid EL
expression that evaluates to the same type as the attribute it’s an alternative to.

For more information, see the package javadoc for the javax.security.enterprise package.

Expression Language 3.0 is specified by JSR-341, "Expression Language", version 3.0 [EL30]
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Chapter 2. Authentication Mechanism
This chapter describes the HttpAuthenticationMechanism interface and contract.
HttpAuthenticationMechanism is used to authenticate callers of web applications, and is specified only
for use in the servlet container. It is explicitly not defined for use with other containers (EJB, JMS, JCA,
etc.).

2.1. Introduction
A web application consists of resources that can be accessed by any number of callers, who are initially
unknown to the application. Callers make themselves known to the application through the process of
authentication.

During authentication, the caller presents proof of identity — a token or credential of some
kind — which the application (or container) then validates. If the proof is valid, the application (or
container) establishes the caller’s identity, then proceeds to the authorization step, in which it
determines whether the caller has permission to access the requested resources.

In some cases (for example, username/password authentication) the interaction between the caller and
the application is simple. In other cases, a lengthier dialog is required — an application may send a
random nonce to the caller, which must then use that nonce in the construction of an authentication
token, or there may be interactions with a third party that vouches for the caller’s identity, or the
authenticity of the provided credential.

The Java EE Platform already specifies mechanisms for authenticating users of web applications. JSR-
340, "Java Servlet Specification", version 3.1 [SERVLET31] specifies a declarative mechanism for
configuring an application to provide BASIC, DIGEST, FORM, or CERT authentication, with
authentication performed automatically by the container based on the application’s configuration,
which, in the case of FORM authentication, can include custom form pages.

In addition, [JASPIC] specifies a general-purpose mechanism for securing messages sent between Java
EE clients and servers. JASPIC defines an SPI called ServerAuthModule, which enables development of
authentication modules to handle any credential type, or engage in interaction of arbitrary complexity
with clients and third parties. [JASPIC] also defines the Servlet Container Profile, which specifies how
JASPIC mechanisms, including ServerAuthModules, are integrated with the servlet container.

While both existing mechanisms are important and useful, each has limitations from the point of view
of an application developer. The servlet container’s login-config mechanism is limited to the auth-
method types defined by [SERVLET31] — it doesn’t support other credential types, or complex
interactions with callers. It also relies on unspecified container mechanisms to associate identity stores
with applications. There is no way for an application to ensure that callers are authenticated against
the desired identity store, or, indeed, against any identity store.

JASPIC, by way of contrast, is extremely flexible and powerful, but is also complex. Writing an
AuthModule, and arranging for the web container to use it for authentication, is a non-trivial exercise.
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Additionally, there is no declarative configuration syntax for JASPIC, and there is no well-defined
mechanism for a container to override an application’s programmatically-registered AuthModule. A
container can choose to register its own AuthModule, or to remove one registered by an application,
but JASPIC will always use the most-recently-registered module — the outcome is dependent on the
order in which the application and the container attempt to register their respective modules.

The HttpAuthenticationMechanism interface is designed to capitalize on the strengths of existing
authentication mechanisms, while mitigating the corresponding limitations. It is essentially a
simplified, servlet-container-specific version of the JASPIC ServerAuthModule interface, retaining that
interface’s flexibility and power, but reducing the cost of implementation. An
HttpAuthenticationMechanism is a CDI bean, and is therefore made available to the container
automatically by CDI. The container is responsible for placing the HttpAuthenticationMechanism in
service.

An application MAY supply its own HttpAuthenticationMechanism, if desired. The servlet container
MUST provide several default HttpAuthenticationMechanism implementations, which an application
can select and configure via standard annotations. The container MAY also provide additional
mechanisms beyond those required by this specification. The rules governing how the container
selects an HttpAuthenticationMechanism, and how it is placed in service, are described in the
"Installation and Configuration" section of this chapter. The required default mechanisms, and
corresponding annotations, are described in the "Annotations and Built-In
HttpAuthenticationMechanism Beans" section.

2.2. Interface and Theory of Operation
The HttpAuthenticationMechanism interface defines three methods that align closely with the methods
defined by the JASPIC ServerAuth interface. The primary distinction is syntactic; unlike JASPIC,
HttpAuthenticationMechanism is specified for the servlet container only, and can therefore reference
servlet types in its method signatures. Only the validateRequest() method must be implemented;
default behaviors are specified for the other two methods.

AuthenticationStatus validateRequest(HttpServletRequest request,
                                     HttpServletResponse response,
                                     HttpMessageContext httpMessageContext
                                    ) throws AuthenticationException;

AuthenticationStatus secureResponse(HttpServletRequest request,
                                    HttpServletResponse response,
                                    HttpMessageContext httpMessageContext
                                   ) throws AuthenticationException;

void cleanSubject(HttpServletRequest request,
                  HttpServletResponse response,
                  HttpMessageContext httpMessageContext);
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Each method performs the same function as the corresponding ServerAuth method. At runtime, the
methods will be invoked by a container-supplied ServerAuthModule that serves as a wrapper, or
container, for the HttpAuthenticationMechanism. The container-supplied ServerAuthModule translates
the method parameters passed to it, invokes the HttpAuthenticationMechanism method, and returns
the resulting status to its caller. The behavior of the HttpAuthenticationMechanism methods should
therefore be functionally equivalent to the behavior specified by the JASPIC Servlet Container Profile
for the equivalent ServerAuthModule methods.

Summarized, this means:

• validateRequest() will be invoked before the doFilter() method of any servlet filter or the service()
method of any servlet in the application for requests to constrained as well as to unconstrained
resources, and, in addition, in response to application code calling the authenticate() method on the
HttpServletRequest.

• secureResponse() will be invoked after the doFilter() method of any servlet filter or the service()
method of any servlet in the application for requests to constrained as well as to unconstrained
resources, but only if any of these two methods have indeed been invoked.

• cleanSubject() will be invoked in response to the application calling the logout() method on the
HttpServletRequest.

The validateRequest() method is provided to allow a caller to authenticate. An implementation of this
method can inspect the HTTP request to extract a credential or other information, or it can write to the
HTTP response to, for example, redirect a caller to an OAuth provider, or return an error response.
After a credential has been obtained and validated, the result of the validation can be communicated
to the container using the HttpMessageContext parameter, which is described in more detail below.

The secureResponse() method is provided to allow post processing on the response generated by a
servlet and/or servlet filter, such as encrypting it.

The cleanSubject() is provided to allow for cleanup after a caller is logged out. For example, an
authentication mechanism that stores state within a cookie can remove that cookie here.

The HttpMessageContext interface defines methods that an HttpAuthenticationMechanism can invoke
to communicate with the JASPIC ServerAuthModule (bridge module) that invokes it. The container
MUST provide an implementation of the interface that supports the necessary container integrations.

The HttpMessageContextWrapper class implements a wrapper can be used, in a manner similar to
HttpServletRequestWrapper, to provide custom behavior.

See javadoc for a detailed description of HttpMessageContext and HttpMessageContextWrapper. See
below for more on the JASPIC bridge module.

2.3. Installation and Configuration
An HttpAuthenticationMechanism must be a CDI bean, and is therefore visible to the container through
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CDI if it is packaged in a bean archive, which generally includes Java EE modules and application
archives, as well as other archives and classes that are not part of an application, but are required by
the Java EE specification to be visible to applications. See the CDI specification for details on bean
archives and bean discovery. An HttpAuthenticationMechanism is assumed to be normal scoped.

It MUST be possible for the definition of an HttpAuthenticationMechanism to exist within the
application archive. Alternatively such definition MAY also exists outside the application archive, for
example in a jar added to the classpath of an application server.

An application packages its own HttpAuthenticationMechanism by including in a bean archive that is
part of the application. Alternatively, it may select and configure one of the container’s built-in
mechanisms using the corresponding annotation, as described in the "Annotations and Built-In
HttpAuthenticationMechanism Beans" section below.

The container decides which HttpAuthenticationMechanism to place in service using the following
rules:

• The container MAY override an application’s chosen HttpAuthenticationMechanism with one
selected by the container, but SHOULD do so only if explicitly configured to.

• If the container does not override the application, it MUST place in service any
HttpAuthenticationMechanism that is provided, either directly or via annotation, by the application.

• If the application makes more than one HttpAuthenticationMechanism available, either directly or
via annotation or both, the results are undefined by this specification.

• If the application does not supply an HttpAuthenticationMechanism, or select one of the built-in
mechanisms, the container MAY choose an HttpAuthenticationMechanism to place in service, but is
NOT REQUIRED to do so.

• If the application does not make an HttpAuthenticationMechanism available, and the container
does not choose one to place in service, then HttpAuthenticationMechanism is not used.

The container MUST use JASPIC when placing an HttpAuthenticationMechanism in service. The
container MUST supply a "bridge" ServerAuthModule that integrates HttpAuthenticationMechanism
with JASPIC. The bridge module MUST look up the correct HttpAuthenticationMechanism using CDI,
then delegate to the HttpAuthenticationMechanism when the bridge module’s methods are invoked.
Since the method signatures and return values of the two interfaces are similar, but not the same, the
bridge module MUST convert back and forth.

When an HttpAuthenticationMechanism is placed in service, the container MUST supply a bridge
ServerAuthModule and the necessary supporting modules (AuthContext, AuthConfig,
AuthConfigProvider), and arrange for the AuthConfigProvider to be registered with the JASPIC
AuthConfigFactory, such that the bridge module is registered for the application context.

When an HttpAuthenticationMechanism is placed in service, the container MUST NOT register any
AuthConfigProvider other than the one corresponding to the bridge ServerAuthModule. Given the
nature of JASPIC, however, it’s possible that some other entity could register a different
AuthConfigProvider after the container has registered the bridge module’s AuthConfigProvider. The
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container is NOT REQUIRED to prevent this.

2.4. Annotations and Built-In
HttpAuthenticationMechanism Beans
A Java EE container MUST support built-in beans for the following HttpAuthenticationMechanism
types, to be made available via configuration:

• BASIC - Authenticates according to the mechanism as described in 13.6.1, "HTTP Basic
Authentication", in [SERVLET31]. See also RFC 7617, "The Basic HTTP Authentication Scheme"
[RFC7617]. This bean is activated and configured via the @BasicAuthenticationMechanismDefinition
annotation.

• FORM - Authenticates according to the mechanism as described in 13.6.3, "Form Based
Authentication", in [SERVLET31]. This bean is activated and configured via the
@FormAuthenticationMechanismDefinition annotation.

• Custom FORM - A variant on FORM, with the difference that continuing the authentication dialog as
described in [SERVLET31], section 13.6.3, step 3, and further clarified in section 13.6.3.1, does not
happen by posting back to j_security_check, but by invoking SecurityContext.authenticate() with the
credentials the application collected. This bean is activated and configured via the
@CustomFormAuthenticationMechanismDefinition annotation.

All of these beans MUST have the qualifier @Default and the scope @ApplicationScoped, as defined by
the CDI specification.

All of the built-in beans MUST support authentication using IdentityStore, described in Chapter 3,
"Identity Store", but MAY fall-back to container-specific methods if no IdentityStore is available.

See also the "Implementation Notes" section of this chapter.

The annotations are defined as shown in the following sections.

2.4.1. BASIC Annotation

The following annotation is used to configure the built-in BASIC authentication mechanism.
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@Retention(RUNTIME)
@Target(TYPE)
public @interface BasicAuthenticationMechanismDefinition {

    /**
     * Name of realm that will be sent via the <code>WWW-Authenticate</code> header.
     * <p>
     * Note that this realm name <b>does not</b> couple a named identity store
     * configuration to the authentication mechanism.
     *
     * @return Name of realm
     */
    String realmName() default "";
}

2.4.2. FORM Annotation

The following annotation is used to configure the built-in FORM authentication mechanism.

@Retention(RUNTIME)
@Target(TYPE)
public @interface FormAuthenticationMechanismDefinition {

    @Nonbinding
    LoginToContinue loginToContinue();
}

See also the "LoginToContinue Annotation" section below.

2.4.3. Custom FORM Annotation

The following annotation is used to configure the built-in Custom FORM authentication mechanism.

@Retention(RUNTIME)
@Target(TYPE)
public @interface CustomFormAuthenticationMechanismDefinition {

    @Nonbinding
    LoginToContinue loginToContinue();
}

See also the "LoginToContinue Annotation" and "Custom FORM Notes" sections below.
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2.4.4. LoginToContinue Annotation

The LoginToContinue annotation provides an application with the ability to declaratively add "login to
continue" functionality to an authentication mechanism. "Login to continue" conceptually refers to the
algorithm (flow) described by the numbered steps in [SERVLET31], Section 13.6.3, "Form Based
Authentication".

The annotation is also used to configure the login page, error page, and redirect/forward behavior for
the built-in form-based authentication mechanisms (implicitly suggesting, but not requiring, that those
authentication mechanisms use the backing interceptor for this annotation, which is described below).

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
public @interface LoginToContinue {

    @Nonbinding
    String loginPage() default "/login";

    @Nonbinding
    boolean useForwardToLogin() default true;

    @Nonbinding
    String useForwardToLoginExpression() default "";

    @Nonbinding
    String errorPage() default "/login-error";
}

The container MUST provide an interceptor implementation, at priority PLATFORM_BEFORE + 220,
that backs the LoginToContinue annotation and intercepts calls to the configured
HttpAuthenticationMechanism. The interceptor MUST behave as follows when intercepting calls to the
HttpAuthenticationMechanism:

Intercepting validateRequest()

• Determine if there is any stale state in the request context, due to a previously aborted flow
involving "login to continue". If so, clear the stale state.

• Determine if this request is a new caller-initiated authentication, by calling
isNewAuthentication() on the AuthenticationParameters object available from
HttpMessageContext.

• If isNewAuthentication() returns true, update the request state to indicate that this is a caller-
initiated authentication.

• If the request is a caller-initiated authentication, continue with flow
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processCallerInitiatedAuthentication.

• Otherwise, if the request is not a caller-initiated authentication, continue with flow
processContainerInitiatedAuthentication.

Flow processCallerInitiatedAuthentication

• Call the next Interceptor, and remember the resulting AuthenticationStatus.

• If the result was AuthenticationStatus.SUCCESS, and HttpMessageContext.getCallerPrincipal()
returns a non-null principal, clear all state.

• Return the AuthenticationStatus.

Flow processContainerInitiatedAuthentication

• Determine how far the caller is in the "login to continue" flow by comparing the request and
state against the following numbered and named steps:

1. OnInitialProtectedURL: Protected resource requested and no saved request state.

2. OnLoginPostback: A postback after redirecting the caller in Step 1. (Note: this is not
necessarily the resource the caller was redirected to — for example, a redirect to /login could
result in a postback to j_security_check, or to /login2.)

3. OnOriginalURLAfterAuthenticate: A request on the original, protected URL from Step 1, with
authentication data and saved request state.

• If the step, as described above, can be determined, continue with the flow having the same
name as that step, otherwise return the result of calling the next Interceptor.

Flow OnInitialProtectedURL

• Save all request details (URI, headers, body, etc.) to the state.

• Redirect or forward to LoginToContinue.loginPage(), depending on the value of the
useForwardToLogin() attribute.

Flow OnLoginPostback

• Call the next Interceptor, and remember the resulting AuthenticationStatus.

• If the result was AuthenticationStatus.SUCCESS:

• If HttpMessageContext.getCallerPrincipal() returns null, return AuthenticationStatus.SUCCESS

• If the current request matches the saved request state (same URI, headers, etc.), return
AuthenticationStatus.SUCCESS

• If the current request does not match the saved request state, save the authentication state
(minimally, the caller principal and groups from the HttpMessageContext) and redirect to the
full request URL as stored in the saved request state.

• If the result was AuthenticationStatus.SEND_FAILURE:

• If LoginToContinue.errorPage() is non-null and non-empty, redirect to
LoginToContinue.errorPage().
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• Return the AuthenticationStatus.

Flow OnOriginalURLAfterAuthenticate

• Retrieve the saved request and authentication details.

• Clear all state related to "login to continue".

• Set a wrapped request into HttpMessageContext that provides all the original request details
(headers, body, method, etc.) from the saved request state.

• Call the HttpMessageContext.notifyContainerAboutLogin() method with the caller principal and
groups from the saved authentication state.

• Return AuthenticationStatus.SUCCESS.

Intercepting secureResponse()

• The secureResponse() method SHOULD NOT be intercepted.

Intercepting cleanSubject()

• The cleanSubject() method SHOULD NOT be intercepted.

See also the SecurityContext.authenticate() Notes section below.

2.4.5. RememberMe Annotation

The RememberMe annotation is used to configure a RememberMeIdentityStore, which must be provided
by the application. To use RememberMe, the application must provide an
HttpAuthenticationMechanism and annotate the HttpAuthenticationMechanism with the RememberMe
annotation.
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@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
public @interface RememberMe {

    @Nonbinding
    int cookieMaxAgeSeconds() default 86400; // 1 day

    @Nonbinding
    String cookieMaxAgeSecondsExpression() default "";

    @Nonbinding
    boolean cookieSecureOnly() default true;

    @Nonbinding
    String cookieSecureOnlyExpression() default "";

    @Nonbinding
    boolean cookieHttpOnly() default true;

    @Nonbinding
    String cookieHttpOnlyExpression() default "";

    @Nonbinding
    String cookieName() default "JREMEMBERMEID";

    @Nonbinding
    boolean isRememberMe() default true;

    @Nonbinding
    String isRememberMeExpression() default "";
}

The container MUST provide an interceptor implementation at priority PLATFORM_BEFORE + 210 that
backs the RememberMe annotation and intercepts calls to the configured
HttpAuthenticationMechanism. The interceptor MUST behave as follows when intercepting calls to the
HttpAuthenticationMechanism:

Intercepting validateRequest()

• Determine whether there is a RememberMe cookie in the request.

• If the cookie is present:

• Use it to construct a RememberMeCredential and call the validate() method of the
RememberMeIdentityStore.
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• If the validate succeeds, call HttpMessageContext.notifyContainerAboutLogin(), passing the
CallerPrincipal and CallerGroups returned by validate().

• If the validate fails, remove the cookie from the request.

• If no cookie is present, or if the attempt to validate a cookie failed, authenticate the caller
normally by calling proceed() on the InvocationContext.

• If authentication succeeds, and the caller has requested to be remembered, as determined by
evaluating the isRememberMeExpression(), then:

• Call the generateLoginToken() method of the RememberMeIdentityStore.

• Set the new cookie with parameters as configured on the RememberMe annotation.

Intercepting secureResponse()

• The secureResponse() method SHOULD NOT be intercepted.

Intercepting cleanSubject()

• If there is a RememberMe cookie in the request, then:

• Remove the cookie.

• Call the removeLoginToken() method of the RememberMeIdentityStore.

See also the description of RememberMeIdentityStore in Chapter 3, "Identity Store".

2.4.6. AutoApplySession Annotation

The AutoApplySession annotation provides a way to declaratively enable JASPIC
javax.servlet.http.registerSession behavior for an authentication mechanism, and automatically apply it
for every request.

The javax.servlet.http.registerSession property is described in Section 3.8.4 of [JASPIC].

This annotation embodies the concept of a caller being authenticated over a series of multiple HTTP
requests (together, a "session"). The built-in form-based authentication mechanisms use this same
concept. It is therefore implicitly suggested, but not required, that the form-based authentication
mechanisms use the backing interceptor for this annotation to establish and maintain their sessions.

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
public @interface AutoApplySession {
}

The container MUST provide an interceptor implementation at priority PLATFORM_BEFORE + 200 that
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backs the AutoApplySession annotation and intercepts calls to the configured
HttpAuthenticationMechanism. The interceptor MUST behave as follows when intercepting calls to the
HttpAuthenticationMechanism:

Intercepting validateRequest()

• Get the HttpServletRequest from the HttpMessageContext that is passed as an argument to
validateRequest().

• Get the Principal from the HttpServletRequest (via getUserPrincipal()).

• If the Principal is null:

• Call the next Interceptor, and remember the resulting AuthenticationStatus.

• If the result is AuthenticationStatus.SUCCESS, get the Map object from the MessageInfo in
the HttpMessageContext, and add an entry to the Map with key
"javax.servlet.http.registerSession" and value "true".

• Return the AuthenticationStatus.

• If the Principal is not null:

• Create a new CallerPrincipalCallback instance, passing the Principal and client subject
obtained from HttpMessageContext to the constructor.

• Obtain the CallbackHandler from HttpMessageContext, and have it handle the
CallerPrincipalCallback.

• Return AuthenticationStatus.SUCCESS.

Intercepting secureResponse()

• The secureResponse() method SHOULD NOT be intercepted.

Intercepting cleanSubject()

• The cleanSubject() method SHOULD NOT be intercepted.

See also the AutoApplySession Notes section below.

2.4.7. Implementation Notes

Section 14.4, item 18, of [SERVLET31] describes requirements for supporting BASIC and FORM
authentication via the web.xml login-config element. This specification requires that implementations
of BASIC and FORM be made available as HttpAuthenticationMechanism CDI beans. The servlet
container is NOT REQUIRED to implement separate and independent mechanisms to satisfy each
requirement. Instead, the container MAY choose to provide a single mechanism, for each of BASIC and
FORM, that meets the requirements of both specifications; i.e., an implementation that can be
configured via login-config, but which is also made available as an HttpAuthenticationMechanism if the
application uses the corresponding annotation. Equally, the container is NOT REQUIRED to provide a
unified implementation, and MAY satisfy the two requirements using separate, independent
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implementations.

An implementation of BASIC or FORM is NOT REQUIRED to support IdentityStore when configured via
login-config, regardless of whether the container has provided a single mechanism or separate
mechanisms to satisfy the login-config and HttpAuthenticationMechanism requirements.
Implementations MAY support IdentityStore for all configuration methods.

If an application provides an HttpAuthenticationMechanism, and also configures a login-config element
in web.xml, the container MAY fail deployment, but is NOT REQUIRED to. If the container does not fail
deployment, it MUST use only the HttpAuthenticationMechanism to authenticate the application’s
callers (i.e., it MUST ignore the login-config from web.xml).

2.4.8. Custom FORM Notes

The Custom FORM variant is intended to align better with modern Java EE technologies such as CDI,
Expression Language, Bean Validation and specifically JSF.

Below is an example showing how the mechanism can be used with those technologies.

Consider the following JSF Facelet:

    <h:messages />

    <body>
        <p>
            Login to continue
        </p>

         <form jsf:id="form">
            <p>
                <strong>Username </strong>
                <input jsf:id="username" type="text"
                    jsf:value="#{loginBacking.username}" />
            </p>
            <p>
                <strong>Password </strong>
                <input jsf:id="password" type="password"
                    jsf:value="#{loginBacking.password}" />
            </p>
            <p>
                <input type="submit" value="Login"
                    jsf:action="#{loginBacking.login}" />
            </p>
        </form>

    </body>
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The "Username" and "Password" inputs are bound via expression language to properties of a named
CDI bean, and the bean’s login() method is invoked to authenticate the user:

@Named
@RequestScoped
public class LoginBacking {

    @NotNull
    private String username;

    @NotNull
    private String password;

    @Inject
    private SecurityContext securityContext;

    @Inject
    private FacesContext facesContext;

    public void login() {

        Credential credential =
            new UsernamePasswordCredential(username, new Password(password));

        AuthenticationStatus status = securityContext.authenticate(
            getRequest(facesContext),
            getResponse(facesContext),
            withParams()
                .credential(credential));

        if (status.equals(SEND_CONTINUE)) {
            facesContext.responseComplete();
        } else if (status.equals(SEND_FAILURE)) {
            addError(facesContext, "Authentication failed");
        }

    }

2.4.9. SecurityContext.authenticate() Notes

Any LoginToContinue-annotated HttpAuthenticationMechanism, as well as the two built-in FORM
authentication mechanisms, can be triggered via a call to the SecurityContext.authenticate() method.
This method is based on the HttpServletRequest.authenticate() method, as defined by [SERVLET31], but
has been extended to support additional functionality defined by the Servlet Container Profile of
[JASPIC].
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The extended behavior is facilitated by the AuthenticationParameters parameter passed to
SecurityContext.authenticate(). AuthenticationParameters includes a newAuthentication field.

When newAuthentication is set to true, the container MUST discard any state that it holds for an
HttpAuthenticationMechanism, and that is associated with the current caller. Specifically, this means
that any associated state, such as described for the LoginToContinue Annotation above, MUST be
cleared, and the request must proceed as if processing a new request.

When newAuthentication is set to false, the container MUST NOT discard any state that it holds for an
HttpAuthenticationMechanism, and that is associated with the current caller. Instead, the container
MUST resume the in-progress authentication dialog, based on the  associated state. Specifically, the
container MUST:

• Determine how far the caller is in the "login to continue" flow, based on the previously saved state
(or lack thereof), and;

• Continue processing from that point as it would normally do.

2.4.10. AutoApplySession Notes

As an example, idiomatic code for setting the javax.servlet.http.registerSession key as per the
requirements is:

httpMessageContext.getMessageInfo().getMap().put("javax.servlet.http.registerSession",
TRUE.toString());

As another example, idiomatic code for setting the CallerPrincipalCallback as per the requirements is:

httpMessageContext.getHandler().handle(new Callback[] {
    new CallerPrincipalCallback(httpMessageContext.getClientSubject(), principal) }
);

2.5. Relationship to other specifications
An HttpAuthenticationMechanism is a CDI bean, as defined by JSR-346, "Contexts and Dependency
Injection for the Java EE platform", version 1.2 [CDI12].

The methods defined by the HttpAuthenticationMechanism closely map to the methods and semantics
of a ServerAuthModule, as defined by the Servlet Container Profile of [JASPIC]. (But an
HttpAuthenticationMechanism is itself not a ServerAuthModule.) The servlet container MUST use JASPIC
mechanisms to arrange for an HttpAuthenticationMechanism to be placed in service.

This specification mandates that when a ServerAuthModule is called by the Servlet container, CDI
services (such as the BeanManager) MUST be fully available, and all scopes that are defined to be active
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during the service() method of a servlet, or during the doFilter() method of a servlet filter, MUST be
active. Specifically this means that the request, session, and application scopes MUST be active, and
that a ServerAuthModule method such as validateRequest() MUST be able to obtain a reference to the
CDI BeanManager programmatically (for example, by doing a JNDI lookup), and MUST be able to use
that reference to obtain a valid request-scoped, session-scoped, or application-scoped bean. This
specification does not mandate that a ServerAuthModule must itself be a CDI bean, or that a
ServerAuthModule must be injectable.

An HttpAuthenticationMechanism implementation is logically equivalent to a built-in authentication
mechanism as defined by [SERVLET31] (i.e., HTTP Basic Authentication, HTTP Digest Authentication,
Form Based Authentication, and HTTPS Client Authentication); more specifically, it corresponds to an
"additional container authentication mechanism", as described in section 13.6.5 of [SERVLET31].

The BASIC and FORM authentication mechanisms as defined by this specification are logically
equivalent to the similarly named authentication mechanisms in [SERVLET31], respectively sections
13.6.1, "HTTP Basic Authentication", and 13.6.3, "Form Based Authentication".
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Chapter 3. Identity Store
This chapter describes the IdentityStore and IdentityStoreHandler interfaces and contracts.

3.1. Introduction
IdentityStore provides an abstraction of an identity store, which is a database or directory (store) of
identity information about a population of users that includes an application’s callers. An identity store
holds caller names, group membership information, and information sufficient to allow it to validate a
caller’s credentials. An identity store may also contain other information, such as globally unique
caller identifiers (if different from caller name), or other caller attributes.

Implementations of the IdentityStore interface are used to interact with identity stores to authenticate
users (i.e., validate their credentials), and to retrieve caller groups. IdentityStore is roughly analogous
to the JAAS LoginModule interface, which is often integrated into Java EE products (albeit in vendor-
specific ways). Unlike LoginModule, IdentityStore is intended specifically for Java EE, and provides only
credential validation and group retrieval functions (i.e., functions that require interaction with an
identity store). An IdentityStore does not collect caller credentials, or manipulate Subjects.

IdentityStore is intended primarily for use by HttpAuthenticationMechanism implementations, but
could in theory be used by other types of authentication mechanisms (e.g., a JASPIC ServerAuthModule,
or a container’s built-in authentication mechanisms). HttpAuthenticationMechanism implementations
are not required to use IdentityStore — they can authenticate users in any manner they choose — but
IdentityStore will often be a useful and convenient mechanism.

A significant advantage of using HttpAuthenticationMechanism and IdentityStore over container-
provided BASIC or FORM implementations is that it allows an application to control the identity stores
it will authenticate against, in a standard, portable way.

An IdentityStore is expected to perform only context- and environment-independent processing (for
example, verifying usernames and passwords and returning caller data). It should provide a pure
{credentials in, caller data out} function. An IdentityStore should not directly interact with the caller, or
attempt to examine request context or application state.

The IdentityStoreHandler interface defines a mechanism for invoking on IdentityStore to validate a
user credential. An HttpAuthenticationMechanism (or other caller) should not interact directly with an
IdentityStore, but instead invoke the IdentityStoreHandler to validate credentials. The
IdentityStoreHandler, in turn, invokes on the IdentityStore. An IdentityStoreHandler can also
orchestrate an authentication across multiple IdentityStore instances, returning an aggregated result.

A default IdentityStoreHandler implementation is supplied by the container, but applications can also
supply their own implementation. The orchestration behavior of the default IdentityStoreHandler is
described in the "Handling Multiple Identity Stores" section below.
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3.2. Interface and Theory of Operation
The IdentityStore interface defines two methods that are used by the runtime to validate a Credential or
obtain caller information:

• validate(Credential)

• getCallerGroups(CredentialValidationResult)

An implementation of IdentityStore can choose to handle either or both of these methods, depending
on its capabilities and configuration. It indicates which methods it handles through the set of values
returned by its validationTypes() method:

• VALIDATE to indicate that it handles validate()

• PROVIDE_GROUPS to indicate that it handles getCallerGroups()

• Both VALIDATE and PROVIDE_GROUPS to indicate that it handles both methods

This method of declaring capabilities was chosen so that an IdentityStore could be written to support
both methods, but configured to support just one or the other in any particular deployment.

The full interface is shown below (without default behaviors; signatures only).

public interface IdentityStore {

    enum ValidationType { VALIDATE, PROVIDE_GROUPS }

    CredentialValidationResult validate(Credential credential);

    Set<String> getCallerGroups(CredentialValidationResult validationResult);

    int priority();

    Set<ValidationType> validationTypes();
}

3.2.1. Validating Credentials

The validate() method determines whether a Credential is valid, and, if so, returns information about
the user identified by the Credential. It is an optional method that an IdentityStore may choose not to
implement.

CredentialValidationResult validate(Credential credential);

The result of validation is returned as a CredentialValidationResult, which provides methods to obtain
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the resulting status value, and, for successful validations, the ID of the identity store that validated the
credential, the caller principal, the caller’s unique ID in the identity store, and the caller’s group
memberships, if any. Only the caller principal is required to be present for a successful validation.

The identity store ID, caller DN, and caller unique ID are provided to assist implementations of
IdentityStore in cooperating across invocations of validate() and getCallerGroups(). They can be used to
ensure that the correct caller’s groups are returned from getCallerGroups() even in environments
where caller principal name alone is insufficient to uniquely identify the correct user account.

public class CredentialValidationResult {

    public enum Status { NOT_VALIDATED, INVALID, VALID };

    public Status getStatus();

    public String getIdentityStoreId();

    public CallerPrincipal getCallerPrincipal();

    public String getCallerDn();

    public String getCallerUniqueId();

    public Set<String> getCallerGroups();
}

The defined status values are:

• VALID: Validation succeeded and the user is authenticated. The caller principal and groups (if any)
are available ONLY with this result status.

• INVALID: Validation failed. The supplied Credential was invalid, or the corresponding user was not
found in the user store.

• NOT_VALIDATED: Validation was not attempted, because the IdentityStore does not handle the
supplied Credential type.

The Credential interface is a generic interface capable of representing any kind of token or user
credential. An IdentityStore implementation can support multiple concrete Credential types, where a
concrete Credential is an implementation of the Credential interface that represents a particular type of
credential. It can do so by implementing the validate(Credential) method and testing the type of the
Credential that’s passed in. As a convenience, the IdentityStore interface provides a default
implementation of validate(Credential) that delegates to a method that can handle the provided
Credential type, assuming such a method is implemented by the IdentityStore:
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default CredentialValidationResult validate(Credential credential) {
    try {
        return CredentialValidationResult.class.cast(
            MethodHandles.lookup()
                .bind(this, "validate",
                      methodType(CredentialValidationResult.class,
                                 credential.getClass()))
                .invoke(credential));
    } catch (NoSuchMethodException e) {
        return NOT_VALIDATED_RESULT;
    } catch (Throwable e) {
        throw new IllegalStateException(e);
    }
}

So, for example, validate(Credential) would delegate to the following method of ExampleIdentityStore if
passed a UsernamePasswordCredential:

public class ExampleIdentityStore implements IdentityStore {

    public CredentialValidationResult validate(
        UsernamePasswordCredential usernamePasswordCredential) {
        // Implementation ...
        return new CredentialValidationResult(...);
    }
}

3.2.2. Retrieving Caller Information

The getCallerGroups() method retrieves the set of groups associated with a validated caller. It is an
optional method that an IdentityStore may choose not to implement.

Set<String> getCallerGroups(CredentialValidationResult validationResult);

The getCallerGroups() method supports aggregation of identity stores, where one identity store is used
to authenticate users, but one or more other stores are used to retrieve additional groups. In such a
scenario, it is necessary to query identity stores without validating the caller’s credential against the
stores.

If an IdentityStore supports both validate() and getCallerGroups(), the behavior of both methods should
be consistent with respect to groups. That is, for a given user "foo", the set of groups returned when
calling validate() to authenticate user "foo" should be the same as the set of groups returned when
calling getCallerGroups() for CallerPrincipal "foo". (Assuming no errors occur during either call — this

29



requirement is intended as a normative description of expected behavior; it does not imply that an
implementation must "make it right" if errors or other uncontrollable factors cause results to vary
between any two calls.)

As a result, it is never necessary to call getCallerGroups() when there is only one IdentityStore, because
the same groups are returned by the validate() method.

Note that getCallerGroups() is not intended as a general purpose API for retrieving user groups. It
should be called only by an IdentityStoreHandler, in the course of orchestrating a validate() call across
multiple identity stores.

Because getCallerGroups() enables its callers to access an external store as a privileged user (i.e., as an
LDAP or database user with permission to search the store and retrieve information about arbitrary
user accounts), it should be protected against unauthorized access.

Implementors of getCallerGroups() are strongly encouraged to check that the calling context has
IdentityStorePermission, as shown below, before proceeding. (The built-in identity stores are
REQUIRED to do so, see Annotations and Built-In IdentityStore Beans.)

SecurityManager securityManager = System.getSecurityManager();
if (securityManager != null) {
    securityManager.checkPermission(new IdentityStorePermission("getGroups"));
}

3.2.3. Declaring Capabilities

The IdentityStore interface includes methods for an implementation to declare its capabilities and
ordinal priority. An IdentityStore implementation may allow these "capabilities" to be configured, so
that an application can determine what a store is used for.

enum ValidationType { VALIDATE, PROVIDE_GROUPS }

Set<ValidationType> DEFAULT_VALIDATION_TYPES = EnumSet.of(VALIDATE, PROVIDE_GROUPS);

default int priority() {
    return 100;
}

default Set<ValidationType> validationTypes() {
    return DEFAULT_VALIDATION_TYPES;
}

The priority() method allows an IdentityStore to be configured with an ordinal number indicating the
order in which it should be consulted when multiple IdentityStores are present (more precisely, when
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multiple enabled CDI Beans with type IdentityStore are available). Lower numbers represent higher
priority, so an IdentityStore with a lower priority value is called before an IdentityStore with a higher
priority value.

The validationTypes() method returns a Set of enum constants of type ValidationType, indicating the
purposes for which an IdentityStore should be used:

• VALIDATE, to indicate that it handles validate()

• PROVIDE_GROUPS to indicate that it handles getCallerGroups()

• Both VALIDATE and PROVIDE_GROUPS to indicate that it handles both methods

An IdentityStore's validation types determine whether the store is used for authentication only
(meaning any group data it returns must be ignored), for providing groups only (meaning it’s not used
for authentication, but only to obtain group data for a caller that was authenticated by a different
IdentityStore), or for both (meaning it’s used for authentication and any group data it returns is used).

This method of declaring capabilities was chosen to enable applications to enable or disable
IdentityStore capabilities via configuration.

3.2.4. Handling Multiple Identity Stores

Access to the IdentityStore is abstracted by the IdentityStoreHandler interface, which provides a single
method:

public interface IdentityStoreHandler {
    CredentialValidationResult validate(Credential credential);
}

For the caller, the semantics of the validate() method are as described for the IdentityStore method with
the same signature.

The purpose of the IdentityStoreHandler is to allow for multiple identity stores to logically act as a
single IdentityStore to the HttpAuthenticationMechanism. A compliant implementation of this
specification MUST provide a default implementation of the IdentityStoreHandler that is an enabled
CDI bean with qualifier @Default, and scope @ApplicationScoped, as defined by the CDI specification.

The validate() method of the default implementation MUST do the following:

• Call the validate(Credential credential) method on all available IdentityStore beans that declared
themselves capable of doing validation, in the order induced by the return value of the getPriority()
method of each IdentityStore. (Lower priority values imply a lower order, causing the
corresponding validate(Credential credential) method to be called sooner. The calling order is
undefined when two IdentityStore implementations return the same value.)

• If a call to validate() returns a result with status INVALID, remember it, in case no IdentityStore
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returns a VALID result.

• If a call to validate() returns a result with status VALID, remember this result and stop calling
validate().

• If all IdentityStore beans have been called but no result was returned with status VALID, then:

• If a result was previously returned with status INVALID, return that result.

• Otherwise, return a result with status NOT_VALIDATED.

• If there is a VALID result:

• Create an empty set of groups.

• Add any groups returned in the CredentialValidationResult to the set of groups, if and only if
the identity store that returned the VALID result declared the PROVIDE_GROUPS validation
type.

• Call the getCallerGroups() method on all available IdentityStore beans that declared only the
PROVIDE_GROUPS validation type, in the order induced by the return value of the getPriority()
method of each IdentityStore, passing in the CredentialValidationResult obtained during the
previous phase. Add the groups returned by each call to the set of accumulated groups.

• Return a new CredentialValidationResult with status VALID; the CallerPrincipal, CallerUniqueId,
CallerDn, and IdentityStoreId that were returned from the successful validate(); and the
accumulated collection of groups.

The default IdentityStoreHandler MUST make all calls to getCallerGroups() in the context of a
PrivilegedAction. Other implementations of IdentityStoreHandler are strongly encouraged to do so as
well.

The necessary permission grants (i.e., for IdentityStorePermission("getGroups")) should be configured if
running with a SecurityManager.

See javadoc for additional information.

3.2.5. State

An IdentityStore is logically stateless. An IdentityStoreHandler should not make any assumptions about
the state of an IdentityStore before, during, or after making calls to it. In particular, an IdentityStore
store should not be aware of the point its caller has reached in the authentication process, and, even
more specifically, an IdentityStore should not keep track of whether a caller is authenticated or not at
any given moment in time.

An IdentityStore instance may make use of instance variables; for example, to store configuration data
like an LDAP URL, to store actual caller data for in-memory lookup, for the caching, etc.
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3.2.6. RememberMeIdentityStore

The RememberMeIdentityStore is a specialized interface that is similar to the standard IdentityStore
interface, but is a distinct type (no inheritance relationship) and works differently.

Applications often want to remember logged in callers for extended periods of time — days or
weeks — so that callers don’t have to log in every time they visit the application. A
RememberMeIdentityStore can be used to:

• Generate a login token ("remember me token") for a caller

• Remember the caller associated with the login token

• Validate the login token when the caller returns, and re-authenticate the caller without the need to
provide additional credentials.

If the caller does not have a login token, or if the login token has expired, then the normal
authentication process takes place.

public interface RememberMeIdentityStore {

    CredentialValidationResult validate(RememberMeCredential credential);

    String generateLoginToken(CallerPrincipal callerPrincipal, Set<String> groups);

    void removeLoginToken(String token);
}

RememberMeIdentityStore can only be used when an application includes an
HttpAuthenticationMechanism or configures one of the built-in ones. The application must specify the
RememberMe annotation on the HttpAuthenticationMechanism to configure the
RememberMeIdentityStore.

See the description of the RememberMe annotation in Chapter 2, "Authentication Mechanism".

3.3. Installation and Configuration
Installation of an IdentityStore depends on the CDI specification. That is, an IdentityStore is considered
installed and available for usage when it’s available to the CDI runtime as an enabled Bean. An
IdentityStore is assumed to be normal scoped.

It MUST be possible for the definition of an IdentityStore to exist within the application archive.
Alternatively such definition MAY also exists outside the application archive, for example in a jar
added to the classpath of an application server.

As described above, in the "Declaring Capabilities" section, the IdentityStore interface includes two
methods, validationTypes() and priority(), that enable an IdentityStore to declare its capabilities. Those
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capabilities may be intrinsic — determined by the IdentityStore's implementation — or they may be
determined by the IdentityStore's configuration.

3.4. Annotations and Built-In IdentityStore Beans
A Java EE container MUST support built-in beans for the following IdentityStore types, to be configured
and made available via corresponding annotations:

• LDAP — Supports caller data that is stored in an external LDAP server. This bean is activated and
configured via the @LdapIdentityStoreDefinition annotation.

• Database — Supports caller data that is stored in an external database accessible via a DataSource
bound to JNDI. This bean is activated and configured via the @DatabaseIdentityStoreDefinition
annotation.

Each of these beans MUST have the qualifier @Default and the scope @ApplicationScoped, as defined
by the CDI specification.

The built-in identity stores MUST support validating UsernamePasswordCredential. They MAY support
other credential types, but are NOT REQUIRED to.

The built-in identity stores MUST check whether a SecurityManager is configured, and, if so, check
whether the calling context has IdentityStorePermission, as described in Retrieving Caller Information
above, before proceeding.

Note that implementations are explicitly NOT REQUIRED to provide an LDAP server or database. The
requirement is only to provide IdentityStore implementations that can work with an external LDAP or
database server that may be present in the operating environment.

The corresponding annotations are defined as shown in the following sections.

3.4.1. LDAP Annotation

The LdapIdentityStoreDefinition annotation configures an instance of the built-in LDAP identity store.
See javadoc for details of the configuration attributes.

@Retention(RUNTIME)
@Target(TYPE)
public @interface LdapIdentityStoreDefinition {

    enum LdapSearchScope { ONE_LEVEL, SUBTREE }

    String url() default "";

    String bindDn() default "";

    String bindDnPassword() default "";
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    String callerBaseDn() default "";

    String callerNameAttribute() default "uid";

    String callerSearchBase() default "";

    String callerSearchFilter() default "";

    LdapSearchScope callerSearchScope() default LdapSearchScope.SUBTREE;

    String callerSearchScopeExpression() default "";

    String groupSearchBase() default "";

    String groupSearchFilter() default "";

    LdapSearchScope groupSearchScope() default LdapSearchScope.SUBTREE;

    String groupSearchScopeExpression() default "";

    String groupNameAttribute() default "cn";

    String groupMemberAttribute() default "member";

    String groupMemberOfAttribute() default "memberOf";

    int readTimeout() default 0;

    String readTimeoutExpression() default "";

    int maxResults() default 1000;

    String maxResultsExpression() default "";

    int priority() default 80;

    String priorityExpression() default "";

    ValidationType[] useFor() default {VALIDATE, PROVIDE_GROUPS};

    String useForExpression() default "";

}
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3.4.2. Database Annotation

The DatabaseIdentityStoreDefinition annotation configures an instance of the built-in database identity
store.

@Retention(RUNTIME)
@Target(TYPE)
public @interface DatabaseIdentityStoreDefinition {

    String dataSourceLookup() default "java:comp/DefaultDataSource";

    String callerQuery() default "";

    String groupsQuery() default "";

    Class<? extends PasswordHash> hashAlgorithm() default Pbkdf2PasswordHash.class;

    String[] hashAlgorithmParameters() default {};

    int priority() default 70;

    String priorityExpression() default "";

    ValidationType[] useFor() default {VALIDATE, PROVIDE_GROUPS};

    String useForExpression() default "";
}

Password hashing/hash verification is provided by an implementation of the PasswordHash interface,
which must be made available as a dependent-scoped bean, and is configured by type on the
hashAlgorithm() attribute. The specified type may refer to the actual implementation class, or to any
type it implements or extends, as long as the specified type implements the PasswordHash interface.

Parameters for the configured PasswordHash can be provided using the hashAlgorithmParameters
attribute, and will be passed to the initialize() method of the PasswordHash when the identity store is
initialized.

The default hash algorithm, Pbkdf2PasswordHash, is an interface denoting a standard, built-in
PasswordHash. All implementations of this specification MUST provide an implementation of the
Pbkdf2PasswordHash interface, with configuration and behavior as described by the interface’s
javadoc.

See javadoc for further details on PasswordHash and the DatabaseIdentityStoreDefinition annotation.
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3.5. Relationship to Other Specifications
IdentityStore and IdentityStoreHandler implementations are CDI beans, as defined by [CDI12].
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Chapter 4. Security Context
This chapter describes the SecurityContext interface and contract.

4.1. Introduction
The Java EE platform defines a declarative security model for protecting application resources. The
declared constraints on access are then enforced by the container. In some cases the declarative model
is not sufficient; for example, when a combination of tests and constraints is needed that is more
complex than the declarative model allows for. Programmatic security allows an application to
perform tests and grant or deny access to resources.

This specification provides an access point for programmatic security — a security
context — represented by the SecurityContext interface.

In this version of the specification, the SecurityContext MUST be available in the Servlet container and
the EJB container. Application servers MAY make SecurityContext available in other containers, but are
NOT REQUIRED to.

4.2. Retrieving and Testing for Caller Data
The SecurityContext interface defines two methods that allow the application to test aspects of the
caller data:

Principal getCallerPrincipal();

<T extends Principal> Set<T> getPrincipalsByType(Class<T> pType);

boolean isCallerInRole(String role);

The getCallerPrincipal() method retrieves the Principal representing the caller. This is the container-
specific representation of the caller principal, and the type may differ from the type of the caller
principal originally established by an HttpAuthenticationMechanism. This method returns null for an
unauthenticated caller. (Note that this behavior differs from the behavior of
EJBContext.getCallerPrincipal(), which, per JSR-345, "Enterprise JavaBeans", version 3.2 [EJB32], returns
a principal with a "product-specific unauthenticated principal name" to represent an unauthenticated
caller.)

The getPrincipalsByType() method retrieves all principals of the given type. This method can be used to
retrieve an application-specific caller principal established during authentication. This method is
primarily useful in the case that the container’s caller principal is a different type than the application
caller principal, and the application needs specific information behavior available only from the
application principal. This method returns an empty Set if the caller is unauthenticated, or if the
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requested type is not found.

Where both a container caller principal and an application caller principal are present, the value
returned by getName() MUST be the same for both principals.

See the Chapter 1, "Concepts", for more information on principal handling.

The isCallerInRole() method takes a String argument that represents the role that is to be tested for. It is
undefined by this specification how the role determination is made, but the result MUST be the same
as if the corresponding container-specific call had been made (i.e., HttpServletRequest.isUserInRole(),
EJBContext.isCallerInRole()), and MUST be consistent with the result implied by other specifications
that prescribe role-mapping behavior.

4.3. Testing for Access
The SecurityContext interface defines a method for programmatically testing access to a resource:

boolean hasAccessToWebResource(String resource, String... methods);

The hasAccessToWebResource() method determines if the caller has access to the specified web
resource for the specified HTTP methods, as determined by the security constraints configured for the
application. See section 13.8 of [SERVLET31] for a description of web application security constraints.

The resource parameter is an URLPatternSpec that identifies an application-specific web resource. See
the javadoc for more detail.

This method can only be used to check access to resources in the current application — it cannot be
called cross-application, or cross-container, to check access to resources in a different application.

As an example, consider the following Servlet definition:

@WebServlet("/protectedServlet")
@ServletSecurity(@HttpConstraint(rolesAllowed = "foo"))
public class ProtectedServlet extends HttpServlet { ... }

And the following call to hasAccessToWebResource():

securityContext.hasAccessToWebResource("/protectedServlet", GET)

The above hasAccessToWebResource() call would return true if and only if the caller is in role "foo".
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4.4. Triggering the Authentication Process
The SecurityContext interface defines a method that allows an application to programmatically trigger
the authentication process:

AuthenticationStatus authenticate(HttpServletRequest request,
                        HttpServletResponse response,
                        AuthenticationParameters parameters);

Programmatically triggering means that the container responds as if the caller had attempted to access
a constrained resource. It causes the container to invoke the authentication mechanism configured for
the application. If the configured authentication mechanism is an HttpAuthenticationMechanism, then
the AuthenticationParameters argument is meaningful and extended capabilities of
HttpAuthenticationMechanism are available. If not, the behavior and result is as if
HttpServletRequest.authenticate() were called.

The authenticate() method allows an application to signal to the container that it should start the
authentication process with the caller. This method requires a HttpServletRequest and
HttpServletResponse parameters to be passed in, and can therefore only be used in a valid Servlet
context.

4.5. Relationship to Other Specifications
The SecurityContext implementation is a CDI bean, as defined by [CDI12].

Various specifications in Java EE provide similar or even identical methods to those provided be the
SecurityContext. It is the intention of this specification to eventually supersede those methods and
provide a cross-specification, platform alternative. The following gives an overview:

• Servlet - HttpServletRequest#getUserPrincipal, HttpServletRequest#isUserInRole

• EJB - EJBContext#getCallerPrincipal, EJBContext#isCallerInRole

• JAX-WS - WebServiceContext#getUserPrincipal, WebServiceContext#isUserInRole

• JAX-RS - SecurityContext#getUserPrincipal, SecurityContext#isUserInRole

• JSF - ExternalContext#getUserPrincipal, ExternalContext#isUserInRole

• CDI - @Inject Principal

• WebSockets - Session#getUserPrincipal
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