
Oracle Corporation
www.oracle.com

Submit comments about this document to: users@servlet-spec.java.net

Java™ Servlet Specification

Version 3.1
Rajiv Mordani

Shing Wai Chan
December 2012

PUBLIC REVIEW

Specification: JSR-340 Java Servlet 3.1Specification ("Specification")

Version: 3.1

Status: Early Draft Review

Release: 26 June2012

Copyright 2012 Oracle America, Inc.
500 Oracle Parkway, Redwood City, California 94065, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign pat-
ents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any form by
any means without the prior written authorization of Oracle America, Inc. ("Oracle") and its licensors, if any. Any use of the Specification and
the information described therein will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2 below, Oracle hereby grants you a
fully-paid, non-exclusive, non-transferable, limited license (without the right to sublicense) under Oracle's intellectual property rights to:

1.Review the Specification for the purposes of evaluation. This includes: (i) developing implementations of the Specification for your internal,
non-commercial use; (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or
written communications which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion of
the Technology.
2.Distribute implementations of the Specification to third parties for their testing and evaluation use, provided that any such implementation:
(i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java
interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification or Specifications
being implemented;
(ii) is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or "INCOMPATIBLE" or "UNSTABLE" or
"BETA" in any list of available builds and in proximity to every link initiating its download, where the list or link is under Licensee's control;
and
(iii) includes the following notice:
"This is an implementation of an early-draft specification developed under the Java Community Process (JCP) and is made available for test-
ing and evaluation purposes only. The code is not compatible with any specification of the JCP."
The grant set forth above concerning your distribution of implementations of the specification is contingent upon your agreement to terminate
development and distribution of your "early draft" implementation as soon as feasible following final completion of the specification. If you
fail to do so, the foregoing grant shall be considered null and void.
No provision of this Agreement shall be understood to restrict your ability to make and distribute to third parties applications written to the
Specification.
Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Oracle intellectual property, and the
Specification may only be used in accordance with the license terms set forth herein. This license will expire on the earlier of: (a) two (2)
years from the date of Release listed above; (b) the date on which the final version of the Specification is publicly released; or (c) the date on
which the Java Specification Request (JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate
immediately without notice from Oracle if you fail to comply with any provision of this license. Upon termination, you must cease use of or
Please
Recycle

destroy the Specification.
"Licensor Name Space" means the public class or interface declarations whose names begin with "java", "javax", "com.oracle" or their equiv-
alents in any subsequent naming convention adopted by Oracle through the Java Community Process, or any recognized successors or
replacements thereof
TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Oracle or Oracle's licensors is granted hereunder. Oracle,
the Oracle logo, Java are trademarks or registered trademarks of Oracle USA, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES
WHICH CANNOT OR WILL NOT BE CORRECTED BY ORACLE. ORACLE MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any com-
mitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERI-
ODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION, IF ANY. ORACLE MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be gov-
erned by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE OR ITS LICENSORS BE LIABLE FOR ANY DAM-
AGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSE-
QUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECI-
FICATION, EVEN IF ORACLE AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Oracle (and its licensors) harmless from any claims based on your use of the Specification for any purposes other than the lim-
ited right of evaluation as described above, and from any claims that later versions or releases of any Specification furnished to you are incom-
patible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any
tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accor-
dance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for
non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the Specification
("Feedback"). To the extent that you provide Oracle with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-propri-
etary and non-confidential basis, and (ii) grant Oracle a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right
to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS
Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the Inter-

national Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees
to comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export
or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written com-
munications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its subject matter during the term of this Agreement. No modifica-
tion to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.

Preface

This document is the Java™ Servlet Specification, version 3.1. The standard for the
Java Servlet API is described herein.

Additional Sources
The specification is intended to be a complete and clear explanation of Java Servlets,
but if questions remain, the following sources may be consulted:

■ A reference implementation (RI) has been made available which provides a
behavioral benchmark for this specification. Where the specification leaves
implementation of a particular feature open to interpretation, implementors may
use the reference implementation as a model of how to carry out the intention of
the specification.

■ A compatibility test suite (CTS) has been provided for assessing whether
implementations meet the compatibility requirements of the Java Servlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard.

■ If further clarification is required, the working group for the Java Servlet API
under the Java Community Process should be consulted, and is the final arbiter of
such issues.

Comments and feedback are welcome, and will be used to improve future versions.

Who Should Read This Specification
The intended audience for this specification includes the following groups:
v

■ Web server and application server vendors that want to provide servlet engines
that conform to this standard.

■ Authoring tool developers that want to support Web applications that conform to
this specification

■ Experienced servlet authors who want to understand the underlying mechanisms
of servlet technology.

We emphasize that this specification is not a user’s guide for servlet developers and
is not intended to be used as such. References useful for this purpose are available
from http://java.sun.com/products/servlet.

API Reference
The full specifications of classes, interfaces, and method signatures that define the
Java Servlet API, as well as their accompanying Javadoc™ documentation, is
available online.

Other Java Platform Specifications
The following Java API specifications are referenced throughout this specification:

■ Java Platform, Enterprise Edition ("Java EE"), version 6
■ JavaServer Pages™ ("JSP™"), version 2.2
■ Java Naming and Directory Interface™ ("J.N.D.I.").
■ Context and Dependency Injection for the Java EE Platform
■ Managed Beans specification

These specifications may be found at the Java Platform, Enterprise Edition Web site:
http://java.sun.com/javaee/.

Other Important References
The following Internet specifications provide information relevant to the
development and implementation of the Java Servlet API and standard servlet
engines:
vi Java Servlet Specification • November 2009

■ RFC 1630 Uniform Resource Identifiers (URI)
■ RFC 1738 Uniform Resource Locators (URL)
■ RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
■ RFC 1808 Relative Uniform Resource Locators
■ RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)
■ RFC 2045 MIME Part One: Format of Internet Message Bodies
■ RFC 2046 MIME Part Two: Media Types
■ RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
■ RFC 2048 MIME Part Four: Registration Procedures
■ RFC 2049 MIME Part Five: Conformance Criteria and Examples
■ RFC 2109 HTTP State Management Mechanism
■ RFC 2145 Use and Interpretation of HTTP Version Numbers
■ RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

■ RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)
■ RFC 2617 HTTP Authentication: Basic and Digest Authentication
■ RFC 3986 Uniform Resource Identifier (URI): Generic Syntax

Online versions of these RFCs are at http://wwww.ietf.org/rfc/.

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information affecting this specification and its implementations.

The eXtensible Markup Language (XML) is used for the specification of the
Deployment Descriptors described in Chapter 13 of this specification. More
information about XML can be found at the following Web sites:

http://java.sun.com/xml

http://www.xml.org/

Providing Feedback
We welcome any and all feedback about this specification. Please e-mail your
comments to jsr-315-comments@jcp.org.

Please note that due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

1. This reference is mostly tongue-in-cheek although most of the concepts described in the HTCPCP RFC are
relevant to all well-designed Web servers.
Preface vii

Expert Group members
■ Deepak Anupalli (Pramati Technologies)

■ Ted Goddard (Icesoft Technologies Inc)

■ Robert Goff (IBM)

■ Richard Hightower

■ Seth Hodgson (Adobe Systems Inc.)

■ Remy Maucherat (RedHat)

■ Minoru Nitta (Fujitsu Limited)

■ Chang Paek (TmaxSoft, Inc)

■ Ramesh PVK (Pramati Technnologies)

■ Alex Rojkov (Caucho Technologies)

■ Mark Thomas (VMware)

■ Gregory John Wilkins

■ Wenbo Zhu (Google Inc.)

Acknowledgements
Bill Shannon from Oracle has provided invaluable technical input to the
specification. Ron Monzillo from Oracle has helped drive some of the proposals and
technical discussions around security aspects.
viii Java Servlet Specification • November 2009

Contents

Contents ix

1. Overview 1

1.1 What is a Servlet? 1

1.2 What is a Servlet Container? 1

1.3 An Example 2

1.4 Comparing Servlets with Other Technologies 3

1.5 Relationship to Java Platform, Enterprise Edition 3

1.6 Compatibility with Java Servlet Specification Version 2.5 4

1.6.1 Processing annotations 4

2. The Servlet Interface 5

2.1 Request Handling Methods 5

2.1.1 HTTP Specific Request Handling Methods 5

2.1.2 Additional Methods 6

2.1.3 Conditional GET Support 6

2.2 Number of Instances 6

2.2.1 Note About The Single Thread Model 7

2.3 Servlet Life Cycle 7

2.3.1 Loading and Instantiation 7
ix

2.3.2 Initialization 8

2.3.2.1 Error Conditions on Initialization 8

2.3.2.2 Tool Considerations 8

2.3.3 Request Handling 9

2.3.3.1 Multithreading Issues 9

2.3.3.2 Exceptions During Request Handling 9

2.3.3.3 Asynchronous processing 10

2.3.3.4 Thread Safety 20

2.3.3.5 Upgrade Processing 20

2.3.4 End of Service 21

3. The Request 23

3.1 HTTP Protocol Parameters 23

3.1.1 When Parameters Are Available 24

3.2 File upload 24

3.3 Attributes 25

3.4 Headers 25

3.5 Request Path Elements 26

3.6 Path Translation Methods 27

3.7 Non Blocking IO 28

3.8 Cookies 29

3.9 SSL Attributes 29

3.10 Internationalization 30

3.11 Request data encoding 30

3.12 Lifetime of the Request Object 31

4. Servlet Context 33

4.1 Introduction to the ServletContext Interface 33

4.2 Scope of a ServletContext Interface 33
x Java Servlet Specification •

4.3 Initialization Parameters 34

4.4 Configuration methods 34

4.4.1 Programmatically adding and configuring Servlets 35

4.4.1.1 addServlet(String servletName, String className) 35

4.4.1.2 addServlet(String servletName, Servlet servlet) 35

4.4.1.3 addServlet(String servletName, Class <? extends
Servlet> servletClass) 35

4.4.1.4 <T extends Servlet> T createServlet(Class<T> clazz) 35

4.4.1.5 ServletRegistration getServletRegistration(String
servletName) 36

4.4.1.6 Map<String, ? extends ServletRegistration>
getServletRegistrations() 36

4.4.2 Programmatically adding and configuring Filters 36

4.4.2.1 addFilter(String filterName, String className) 36

4.4.2.2 addFilter(String filterName, Filter filter) 36

4.4.2.3 addFilter(String filterName, Class <? extends Filter>
filterClass) 37

4.4.2.4 <T extends Filter> T createFilter(Class<T> clazz) 37

4.4.2.5 FilterRegistration getFilterRegistration(String
filterName) 37

4.4.2.6 Map<String, ? extends FilterRegistration>
getServletRegistrations() 37

4.4.3 Programmatically adding and configuring Listeners 38

4.4.3.1 void addListener(String className) 38

4.4.3.2 <T extends EventListener> void addListener(T t) 38

4.4.3.3 void addListener(Class <? extends EventListener>
listenerClass) 39

4.4.3.4 <T extends EventListener> void
createListener(Class<T> clazz) 39

4.4.3.5 Annotation processing requirements for
programmatically added Servlets, Filters and
Listeners 40
Contents xi

4.5 Context Attributes 40

4.5.1 Context Attributes in a Distributed Container 41

4.6 Resources 41

4.7 Multiple Hosts and Servlet Contexts 42

4.8 Reloading Considerations 42

4.8.1 Temporary Working Directories 42

5. The Response 43

5.1 Buffering 43

5.2 Headers 44

5.3 Non Blocking IO 45

5.4 Convenience Methods 46

5.5 Internationalization 47

5.6 Closure of Response Object 48

5.7 Lifetime of the Response Object 48

6. Filtering 49

6.1 What is a filter? 49

6.1.1 Examples of Filtering Components 50

6.2 Main Concepts 50

6.2.1 Filter Lifecycle 50

6.2.2 Wrapping Requests and Responses 52

6.2.3 Filter Environment 52

6.2.4 Configuration of Filters in a Web Application 53

6.2.5 Filters and the RequestDispatcher 56

7. Sessions 59

7.1 Session Tracking Mechanisms 59

7.1.1 Cookies 59

7.1.2 SSL Sessions 60
xii Java Servlet Specification •

7.1.3 URL Rewriting 60

7.1.4 Session Integrity 60

7.2 Creating a Session 60

7.3 Session Scope 61

7.4 Binding Attributes into a Session 62

7.5 Session Timeouts 62

7.6 Last Accessed Times 63

7.7 Important Session Semantics 63

7.7.1 Threading Issues 63

7.7.2 Distributed Environments 63

7.7.3 Client Semantics 64

8. Annotations and pluggability 65

8.1 Annotations and pluggability 65

8.1.1 @WebServlet 65

8.1.2 @WebFilter 67

8.1.3 @WebInitParam 67

8.1.4 @WebListener 67

8.1.5 @MultipartConfig 68

8.1.6 Other annotations / conventions 68

8.2 Pluggability 69

8.2.1 Modularity of web.xml 69

8.2.2 Ordering of web.xml and web-fragment.xml 71

8.2.3 Assembling the descriptor from web.xml, web-fragment.xml and
annotations 76

8.2.4 Shared libraries / runtimes pluggability 89

8.3 JSP container pluggability 91

8.4 Processing annotations and fragments 92

9. Dispatching Requests 93
Contents xiii

9.1 Obtaining a RequestDispatcher 93

9.1.1 Query Strings in Request Dispatcher Paths 94

9.2 Using a Request Dispatcher 94

9.3 The Include Method 95

9.3.1 Included Request Parameters 95

9.4 The Forward Method 96

9.4.1 Query String 96

9.4.2 Forwarded Request Parameters 96

9.5 Error Handling 97

9.6 Obtaining an AsyncContext 97

9.7 The Dispatch Method 98

9.7.1 Query String 98

9.7.2 Dispatched Request Parameters 98

10. Web Applications 101

10.1 Web Applications Within Web Servers 101

10.2 Relationship to ServletContext 101

10.3 Elements of a Web Application 102

10.4 Deployment Hierarchies 102

10.5 Directory Structure 102

10.5.1 Example of Application Directory Structure 104

10.6 Web Application Archive File 104

10.7 Web Application Deployment Descriptor 104

10.7.1 Dependencies On Extensions 105

10.7.2 Web Application Class Loader 105

10.8 Replacing a Web Application 106

10.9 Error Handling 106

10.9.1 Request Attributes 106

10.9.2 Error Pages 107
xiv Java Servlet Specification •

10.9.3 Error Filters 108

10.10 Welcome Files 109

10.11 Web Application Environment 110

10.12 Web Application Deployment 111

10.13 Inclusion of a web.xml Deployment Descriptor 111

11. Application Lifecycle Events 113

11.1 Introduction 113

11.2 Event Listeners 113

11.2.1 Event Types and Listener Interfaces 114

11.2.2 An Example of Listener Use 115

11.3 Listener Class Configuration 115

11.3.1 Provision of Listener Classes 115

11.3.2 Deployment Declarations 116

11.3.3 Listener Registration 116

11.3.4 Notifications At Shutdown 116

11.4 Deployment Descriptor Example 116

11.5 Listener Instances and Threading 117

11.6 Listener Exceptions 117

11.7 Distributed Containers 118

11.8 Session Events 118

12. Mapping Requests to Servlets 119

12.1 Use of URL Paths 119

12.2 Specification of Mappings 120

12.2.1 Implicit Mappings 120

12.2.2 Example Mapping Set 121

13. Security 123

13.1 Introduction 123
Contents xv

13.2 Declarative Security 124

13.3 Programmatic Security 124

13.4 Programmatic Access Control Annotations 126

13.4.1 @ServletSecurity Annotation 126

13.4.1.1 Examples 129

13.4.1.2 Mapping @ServletSecurity to security-constraint 130

13.4.1.3 Mapping @HttpConstraint and
@HttpMethodConstraint to XML. 132

13.4.2 setServletSecurity of ServletRegistration.Dynamic 134

13.5 Roles 134

13.6 Authentication 135

13.6.1 HTTP Basic Authentication 135

13.6.2 HTTP Digest Authentication 136

13.6.3 Form Based Authentication 136

13.6.3.1 Login Form Notes 137

13.6.4 HTTPS Client Authentication 138

13.6.5 Additional Container Authentication Mechanisms 138

13.7 Server Tracking of Authentication Information 138

13.8 Specifying Security Constraints 139

13.8.1 Combining Constraints 140

13.8.2 Example 141

13.8.3 Processing Requests 143

13.9 Default Policies 144

13.10 Login and Logout 144

14. Deployment Descriptor 147

14.1 Deployment Descriptor Elements 147

14.2 Rules for Processing the Deployment Descriptor 148

14.3 Deployment Descriptor 149
xvi Java Servlet Specification •

14.4 Deployment Descriptor Diagram 149

14.5 Examples 172

14.5.1 A Basic Example 173

14.5.2 An Example of Security 174

15. Requirements related to other Specifications 177

15.1 Sessions 177

15.2 Web Applications 177

15.2.1 Web Application Class Loader 177

15.2.2 Web Application Environment 178

15.2.3 JNDI Name for Web Module Context Root URL 178

15.3 Security 179

15.3.1 Propagation of Security Identity in EJB™ Calls 180

15.3.2 Container Authorization Requirements 180

15.3.3 Container Authentication Requirements 180

15.4 Deployment 181

15.4.1 Deployment Descriptor Elements 181

15.4.2 Packaging and Deployment of JAX-WS Components 181

15.4.3 Rules for Processing the Deployment Descriptor 183

15.5 Annotations and Resource Injection 183

15.5.1 @DeclareRoles 184

15.5.2 @EJB Annotation 185

15.5.3 @EJBs Annotation 186

15.5.4 @Resource Annotation 186

15.5.5 @PersistenceContext Annotation 187

15.5.6 @PersistenceContexts Annotation 187

15.5.7 @PersistenceUnit Annotation 188

15.5.8 @PersistenceUnits Annotation 188

15.5.9 @PostConstruct Annotation 188
Contents xvii

15.5.10 @PreDestroy Annotation 189

15.5.11 @Resources Annotation 189

15.5.12 @RunAs Annotation 190

15.5.13 @WebServiceRef Annotation 191

15.5.14 @WebServiceRefs Annotation 191

15.5.15 Managed Beans and JSR 299 requirements 191

A. Change Log 193

A.1 Changes since Servlet 3.0 193

A.2 Changes since Servlet 3.0 Proposed Final Draft 195

A.3 Changes since Servlet 3.0 Public Review 195

A.4 Changes since Servlet 3.0 EDR 196

A.5 Changes since Servlet 2.5 MR6 196

A.6 Changes since Servlet 2.5 MR 5 196

A.6.1 Clarify SRV 8.4 "The Forward Method" 196

A.6.2 Update Deployment descriptor "http-method values allowed"
197

A.6.3 Clarify SRV 7.7.1 "Threading Issues" 197

A.7 Changes Since Servlet 2.5 MR 2 198

A.7.1 Updated Annotation Requirements for Java EE containers 198

A.7.2 Updated Java Enterprise Edition Requirements 198

A.7.3 Clarified HttpServletRequest.getRequestURL() 198

A.7.4 Removal of IllegalStateException from HttpSession.getId() 198

A.7.5 ServletContext.getContextPath() 199

A.7.6 Requirement for web.xml in web applications 199

A.8 Changes Since Servlet 2.4 200

A.8.1 Session Clarification 200

A.8.2 Filter All Dispatches 200

A.8.3 Multiple Occurrences of Servlet Mappings 201
xviii Java Servlet Specification •

A.8.4 Multiple Occurrences Filter Mappings 201

A.8.5 Support Alternative HTTP Methods with Authorization
Constraints 202

A.8.6 Minimum J2SE Requirement 203

A.8.7 Annotations and Resource Injection 203

A.8.8 SRV.9.9 ("Error Handling") Requirement Removed 204

A.8.9 HttpServletRequest.isRequestedSessionIdValid() Clarification
204

A.8.10 SRV.5.5 ("Closure of Response Object") Clarification 204

A.8.11 ServletRequest.setCharacterEncoding() Clarified 205

A.8.12 Java Enterprise Edition Requirements 205

A.8.13 Servlet 2.4 MR Change Log Updates Added 205

A.8.14 Synchronized Access Session Object Clarified 205

A.9 Changes Since Servlet 2.3 205
Contents xix

xx Java Servlet Specification •

CHAPTER 1

Overview

1.1 What is a Servlet?
A servlet is a Java™ technology-based Web component, managed by a container, that
generates dynamic content. Like other Java technology-based components, servlets
are platform-independent Java classes that are compiled to platform-neutral byte
code that can be loaded dynamically into and run by a Java technology-enabled Web
server. Containers, sometimes called servlet engines, are Web server extensions that
provide servlet functionality. Servlets interact with Web clients via a
request/response paradigm implemented by the servlet container.

1.2 What is a Servlet Container?
The servlet container is a part of a Web server or application server that provides the
network services over which requests and responses are sent, decodes MIME-based
requests, and formats MIME-based responses. A servlet container also contains and
manages servlets through their lifecycle.

A servlet container can be built into a host Web server, or installed as an add-on
component to a Web Server via that server’s native extension API. Servlet containers
can also be built into or possibly installed into Web-enabled application servers.

All servlet containers must support HTTP as a protocol for requests and responses,
but additional request/response-based protocols such as HTTPS (HTTP over SSL)
may be supported. The required versions of the HTTP specification that a container
must implement are HTTP/1.0 and HTTP/1.1. Because the container may have a
caching mechanism described in RFC2616 (HTTP/1.1), it may modify requests from
1

the clients before delivering them to the servlet, may modify responses produced by
servlets before sending them to the clients, or may respond to requests without
delivering them to the servlet under the compliance with RFC2616.

A servlet container may place security restrictions on the environment in which a
servlet executes. In a Java Platform, Standard Edition (J2SE, v.1.3 or above) or Java
Platform, Enterprise Edition (Java EE, v.1.3 or above) environment, these restrictions
should be placed using the permission architecture defined by the Java platform. For
example, high-end application servers may limit the creation of a Thread object to
insure that other components of the container are not negatively impacted.

Java SE 7 is the minimum version of the underlying Java platform with which servlet
containers must be built.

1.3 An Example
The following is a typical sequence of events:

1. A client (e.g., a Web browser) accesses a Web server and makes an HTTP request.

2. The request is received by the Web server and handed off to the servlet container.
The servlet container can be running in the same process as the host Web server,
in a different process on the same host, or on a different host from the Web server
for which it processes requests.

3. The servlet container determines which servlet to invoke based on the
configuration of its servlets, and calls it with objects representing the request and
response.

4. The servlet uses the request object to find out who the remote user is, what HTTP
POST parameters may have been sent as part of this request, and other relevant
data. The servlet performs whatever logic it was programmed with, and generates
data to send back to the client. It sends this data back to the client via the
response object.

5. Once the servlet has finished processing the request, the servlet container ensures
that the response is properly flushed, and returns control back to the host Web
server.
2 Java Servlet Specification •

1.4 Comparing Servlets with Other
Technologies
In functionality, servlets lie somewhere between Common Gateway Interface (CGI)
programs and proprietary server extensions such as the Netscape Server API
(NSAPI) or Apache Modules.

Servlets have the following advantages over other server extension mechanisms:

■ They are generally much faster than CGI scripts because a different process model
is used.

■ They use a standard API that is supported by many Web servers.
■ They have all the advantages of the Java programming language, including ease

of development and platform independence.
■ They can access the large set of APIs available for the Java platform.

1.5 Relationship to Java Platform, Enterprise
Edition
The Java Servlet API v.3.0 is a required API of the Java Platform, Enterprise Edition,
v.61. Servlet containers and servlets deployed into them must meet additional
requirements, described in the Java EE specification, for executing in a Java EE
environment.

1. Please see the Java™ Platform, Enterprise Edition specification available at
http://java.sun.com/javaee/
Chapter 1 Overview 3

1.6 Compatibility with Java Servlet
Specification Version 2.5

1.6.1 Processing annotations
In Servlet 2.5, metadata-complete only affected the scanning of annotations at
deployment time. The notion of web-fragments did not exist in servlet 2.5. However
in servlet 3.0 metadata-complete affects scanning of all annotations that specify
deployment information and web-fragments at deployment time. The version of the
descriptor MUST not affect which annotations you scan for in a web application. An
implementation of a particular version of the specification MUST scan for all
annotations supported in that configuration, unless metadata-complete is
specified.
4 Java Servlet Specification •

CHAPTER 2

The Servlet Interface

The Servlet interface is the central abstraction of the Java Servlet API. All servlets
implement this interface either directly, or more commonly, by extending a class that
implements the interface. The two classes in the Java Servlet API that implement the
Servlet interface are GenericServlet and HttpServlet. For most purposes,
Developers will extend HttpServlet to implement their servlets.

2.1 Request Handling Methods
The basic Servlet interface defines a service method for handling client requests.
This method is called for each request that the servlet container routes to an instance
of a servlet.

The handling of concurrent requests to a Web application generally requires that the
Web Developer design servlets that can deal with multiple threads executing within
the service method at a particular time.

Generally the Web container handles concurrent requests to the same servlet by
concurrent execution of the service method on different threads.

2.1.1 HTTP Specific Request Handling Methods
The HttpServlet abstract subclass adds additional methods beyond the basic
Servlet interface that are automatically called by the service method in the
HttpServlet class to aid in processing HTTP-based requests. These methods are:

■ doGet for handling HTTP GET requests
■ doPost for handling HTTP POST requests
■ doPut for handling HTTP PUT requests
■ doDelete for handling HTTP DELETE requests
5

■ doHead for handling HTTP HEAD requests
■ doOptions for handling HTTP OPTIONS requests
■ doTrace for handling HTTP TRACE requests

Typically when developing HTTP-based servlets, a Servlet Developer will only
concern himself with the doGet and doPost methods. The other methods are
considered to be methods for use by programmers very familiar with HTTP
programming.

2.1.2 Additional Methods
The doPut and doDelete methods allow Servlet Developers to support HTTP/1.1
clients that employ these features. The doHead method in HttpServlet is a
specialized form of the doGet method that returns only the headers produced by the
doGet method. The doOptions method responds with which HTTP methods are
supported by the servlet. The doTrace method generates a response containing all
instances of the headers sent in the TRACE request.

2.1.3 Conditional GET Support
The HttpServlet interface defines the getLastModified method to support
conditional GET operations. A conditional GET operation requests a resource be sent
only if it has been modified since a specified time. In appropriate situations,
implementation of this method may aid efficient utilization of network resources.

2.2 Number of Instances
The servlet declaration which is either via the annotation as described in Chapter 8,
“Annotations and pluggability” or part of the deployment descriptor of the Web
application containing the servlet, as described in Chapter 14, “Deployment
Descriptor”, controls how the servlet container provides instances of the servlet.

For a servlet not hosted in a distributed environment (the default), the servlet
container must use only one instance per servlet declaration. However, for a servlet
implementing the SingleThreadModel interface, the servlet container may
instantiate multiple instances to handle a heavy request load and serialize requests
to a particular instance.
6 Java Servlet Specification •

In the case where a servlet was deployed as part of an application marked in the
deployment descriptor as distributable, a container may have only one instance per
servlet declaration per Java Virtual Machine (JVM™)1. However, if the servlet in a
distributable application implements the SingleThreadModel interface, the container
may instantiate multiple instances of that servlet in each JVM of the container.

2.2.1 Note About The Single Thread Model
The use of the SingleThreadModel interface guarantees that only one thread at a
time will execute in a given servlet instance’s service method. It is important to
note that this guarantee only applies to each servlet instance, since the container
may choose to pool such objects. Objects that are accessible to more than one servlet
instance at a time, such as instances of HttpSession, may be available at any
particular time to multiple servlets, including those that implement
SingleThreadModel.

It is recommended that a developer take other means to resolve those issues instead
of implementing this interface, such as avoiding the usage of an instance variable or
synchronizing the block of the code accessing those resources. The
SingleThreadModel Interface is deprecated in this version of the specification.

2.3 Servlet Life Cycle
A servlet is managed through a well defined life cycle that defines how it is loaded
and instantiated, is initialized, handles requests from clients, and is taken out of
service. This life cycle is expressed in the API by the init, service, and destroy
methods of the javax.servlet.Servlet interface that all servlets must implement
directly or indirectly through the GenericServlet or HttpServlet abstract classes.

2.3.1 Loading and Instantiation
The servlet container is responsible for loading and instantiating servlets. The
loading and instantiation can occur when the container is started, or delayed until
the container determines the servlet is needed to service a request.

1. The terms "Java virtual machine" and "JVM" mean a virtual machine for the Java(™) platform.
Chapter 2 The Servlet Interface 7

When the servlet engine is started, needed servlet classes must be located by the
servlet container. The servlet container loads the servlet class using normal Java class
loading facilities. The loading may be from a local file system, a remote file system,
or other network services.

After loading the Servlet class, the container instantiates it for use.

2.3.2 Initialization
After the servlet object is instantiated, the container must initialize the servlet before
it can handle requests from clients. Initialization is provided so that a servlet can
read persistent configuration data, initialize costly resources (such as JDBC™ API-
based connections), and perform other one-time activities. The container initializes
the servlet instance by calling the init method of the Servlet interface with a
unique (per servlet declaration) object implementing the ServletConfig interface.
This configuration object allows the servlet to access name-value initialization
parameters from the Web application’s configuration information. The configuration
object also gives the servlet access to an object (implementing the ServletContext
interface) that describes the servlet’s runtime environment. See Chapter 4, “Servlet
Context” for more information about the ServletContext interface.

2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can throw an UnavailableException or a
ServletException. In this case, the servlet must not be placed into active service
and must be released by the servlet container. The destroy method is not called as it
is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container after a failed
initialization. The exception to this rule is when an UnavailableException indicates
a minimum time of unavailability, and the container must wait for the period to pass
before creating and initializing a new servlet instance.

2.3.2.2 Tool Considerations

The triggering of static initialization methods when a tool loads and introspects a
Web application is to be distinguished from the calling of the init method.
Developers should not assume a servlet is in an active container runtime until the
init method of the Servlet interface is called. For example, a servlet should not try
to establish connections to databases or Enterprise JavaBeans™ containers when
only static (class) initialization methods have been invoked.
8 Java Servlet Specification •

2.3.3 Request Handling
After a servlet is properly initialized, the servlet container may use it to handle client
requests. Requests are represented by request objects of type ServletRequest. The
servlet fills out response to requests by calling methods of a provided object of type
ServletResponse. These objects are passed as parameters to the service method of
the Servlet interface.

In the case of an HTTP request, the objects provided by the container are of types
HttpServletRequest and HttpServletResponse.

Note that a servlet instance placed into service by a servlet container may handle no
requests during its lifetime.

2.3.3.1 Multithreading Issues

A servlet container may send concurrent requests through the service method of
the servlet. To handle the requests, the Servlet Developer must make adequate
provisions for concurrent processing with multiple threads in the service method.

Although it is not recommended, an alternative for the Developer is to implement
the SingleThreadModel interface which requires the container to guarantee that
there is only one request thread at a time in the service method. A servlet container
may satisfy this requirement by serializing requests on a servlet, or by maintaining a
pool of servlet instances. If the servlet is part of a Web application that has been
marked as distributable, the container may maintain a pool of servlet instances in
each JVM that the application is distributed across.

For servlets not implementing the SingleThreadModel interface, if the service
method (or methods such as doGet or doPost which are dispatched to the service
method of the HttpServlet abstract class) has been defined with the synchronized
keyword, the servlet container cannot use the instance pool approach, but must
serialize requests through it. It is strongly recommended that Developers not
synchronize the service method (or methods dispatched to it) in these
circumstances because of detrimental effects on performance.

2.3.3.2 Exceptions During Request Handling

A servlet may throw either a ServletException or an UnavailableException
during the service of a request. A ServletException signals that some error
occurred during the processing of the request and that the container should take
appropriate measures to clean up the request.

An UnavailableException signals that the servlet is unable to handle requests
either temporarily or permanently.
Chapter 2 The Servlet Interface 9

If a permanent unavailability is indicated by the UnavailableException, the servlet
container must remove the servlet from service, call its destroy method, and release
the servlet instance. Any requests refused by the container by that cause must be
returned with a SC_NOT_FOUND (404) response.

If temporary unavailability is indicated by the UnavailableException, the container
may choose to not route any requests through the servlet during the time period of
the temporary unavailability. Any requests refused by the container during this
period must be returned with a SC_SERVICE_UNAVAILABLE (503) response status
along with a Retry-After header indicating when the unavailability will terminate.

The container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent,
thereby removing a servlet that throws any UnavailableException from service.

2.3.3.3 Asynchronous processing

Some times a filter and/or servlet is unable to complete the processing of a request
without waiting for a resource or event before generating a response. For example, a
servlet may need to wait for an available JDBC connection, for a response from a
remote web service, for a JMS message, or for an application event, before
proceeding to generate a response. Waiting within the servlet is an inefficient
operation as it is a blocking operation that consumes a thread and other limited
resources. Frequently a slow resource such as a database may have many threads
blocked waiting for access and can cause thread starvation and poor quality of
service for an entire web container.

Servlet 3.0 introduces the ability for asynchronous processing of requests so that the
thread may return to the container and perform other tasks. When asynchronous
processing begins on the request, another thread or callback may either generate the
response and call complete or dispatch the request so that it may run in the context
of the container using the AsyncContext.dispatch method. A typical sequence of
events for asynchronous processing is:

1. The request is received and passed via normal filters for authentication etc. to the
servlet.

2. The servlet processes the request parameters and/or content to determine the
nature of the request.

3. The servlet issues requests for resources or data, for example, sends a remote web
service request or joins a queue waiting for a JDBC connection.

4. The servlet returns without generating a response.

5. After some time, the requested resource becomes available, the thread handling
that event continues processing either in the same thread or by dispatching to a
resource in the container using the AsyncContext.
10 Java Servlet Specification •

Java Enterprise Edition features such as Section 15.2.2, “Web Application
Environment” on page 15-178 and Section 15.3.1, “Propagation of Security Identity
in EJB™ Calls” on page 15-180 are available only to threads executing the initial
request or when the request is dispatched to the container via the
AsyncContext.dispatch method. Java Enterprise Edition features may be available
to other threads operating directly on the response object via the
AsyncContext.start(Runnable) method.

The @WebServlet and @WebFilter annotations described in Chapter 8 have an
attribute - asyncSupported that is a boolean with a default value of false. When
asyncSupported is set to true the application can start asynchronous processing in a
separate thread by calling startAsync (see below), passing it a reference to the
request and response objects, and then exit from the container on the original thread.
This means that the response will traverse (in reverse order) the same filters (or filter
chain) that were traversed on the way in. The response isn't committed till complete
(see below) is called on the AsyncContext. The application is responsible to handle
concurrent access to the request and response objects if the async task is executing
before the container-initiated dispatch that called startAsync has returned to the
container.

Dispatching from a servlet that has asyncSupported=true to one where
asyncSupported is set to false is allowed. In this case, the response will be
committed when the service method of the servlet that does not support async is
exited, and it is the container's responsibility to call complete on the AsyncContext
so that any interested AsyncListener instances will be notified. The
AsyncListener.onComplete notification should also be used by filters as a
mechanism to clear up resources that it has been holding on to for the async task to
complete.

Dispatching from a synchronous servlet to an asynchronous servlet would be illegal.
However the decision of throwing an IllegalStateException is deferred to the
point when the application calls startAsync. This would allow a servlet to either
function as a synchronous or an asynchronous servlet.

The async task that the application is waiting for could write directly to the
response, on a different thread than the one that was used for the initial request. This
thread knows nothing about any filters. If a filter wanted to manipulate the response
in the new thread, it would have to wrap the response when it was processing the
initial request "on the way in", and passed the wrapped response to the next filter in
the chain, and eventually to the servlet. So if the response was wrapped (possibly
multiple times, once per filter), and the application processes the request and writes
directly to the response, it is really writing to the response wrapper(s), i.e., any
output added to the response will still be processed by the response wrapper(s).
When an application reads from a request in a separate thread, and adds output to
the response, it really reads from the request wrapper(s), and writes to the response
wrapper(s), so any input and/or output manipulation intended by the wrapper(s)
will continue to occur.
Chapter 2 The Servlet Interface 11

Alternately if the application chooses to do so it can use the AsyncContext to
dispatch the request from the new thread to a resource in the container. This would
enable using content generation technologies like JSP within the scope of the
container.

In addition to the annotation attributes we have the following methods / classes
added:
■ ServletRequest

■ public AsyncContext startAsync(ServletRequest req, ServletResponse

res). This method puts the request into asynchronous mode and initializes it’s
AsyncContext with the given request and response objects and the time out
returned by getAsyncTimeout. The ServletRequest and ServletResponse
parameters MUST be either the same objects as were passed to the calling
servlet’s service, or the filter’s doFilter method, or be subclasses of
ServletRequestWrapper or ServletResponseWrapper classes that wrap them.
A call to this method ensures that the response isn't committed when the
application exits out of the service method. It is committed when
AsyncContext.complete is called on the returned AsyncContext or the
AsyncContext times out and there are no listeners associated to handle the
time out. The timer for async time outs will not start until the request and it’s
associated response have returned from the container. The AsyncContext could
be used to write to the response from the async thread. It can also be used to
just notify that the response is not closed and committed.

It is illegal to call startAsync if the request is within the scope of a servlet or
filter that does not support asynchronous operations, or if the response has
been committed and closed, or is called again during the same dispatch. The
AsyncContext returned from a call to startAsync can then be used for further
asynchronous processing. Calling the
AsyncContext.hasOriginalRequestResponse() on the returned
AsyncContext will return false, unless the passed ServletRequest and
ServletResponse arguments are the original ones or do not carry application
provided wrappers. Any filters invoked in the outboud direction after this
request was put into asynchronous mode MAY use this as an indication that
some of the request and / or response wrappers that they added during their
inbound invocation MAY need to stay in place for the duration of the
asynchronous operation, and their associated resources MAY not be released. A
ServletRequestWrapper applied during the inbound invocation of a filter MAY
be released by the outbound invocation of the filter only if the given
ServletRequest which is used to initialize the AsyncContext and will be
returned by a call to AsyncContext.getRequest(), does not contain the said
ServletRequestWrapper. The same holds true for ServletResponseWrapper
instances.
12 Java Servlet Specification •

■ public AsyncContext startAsync() is provided as a convenience that uses
the original request and response objects for the async processing. Please note
users of this method SHOULD flush the response if they are wrapped before
calling this method if you wish, to ensure that any data written to the wrapped
response isn’t lost.

■ public AsyncContext getAsyncContext() - returns the AsyncContext that
was created or re initialized by the invocation of startAsync. It is illegal to call
getAsyncContext if the request has not been put in asynchronous mode.

■ public boolean isAsyncSupported() - Returns true if the request supports
async processing, and false otherwise. Async support will be disabled as soon
as the request has passed a filter or servlet that does not support async
processing (either via the designated annotation or declaratively).

■ public boolean isAsyncStarted() - Returns true if async processing has
started on this request, and false otherwise. If this request has been
dispatched using one of the AsyncContext.dispatch methods since it was put
in asynchronous mode, or a call to AsynContext.complete is made, this
method returns false.

■ public DispatcherType getDispatcherType() - Returns the dispatcher type
of a request. The dispatcher type of a request is used by the container to select
the filters that need to be applied to the request. Only filters with the matching
dispatcher type and url patterns will be applied. Allowing a filter that has been
configured for multiple dispatcher types to query a request for it’s dispatcher
type allows the filter to process the request differently depending on it’s
dispatcher type. The initial dispatcher type of a request is defined as
DispatcherType.REQUEST. The dispatcher type of a request dispatched via
RequestDispatcher.forward(ServletRequest, ServletResponse) or
RequestDispatcher.include(ServletRequest, ServletResponse) is given
as DispatcherType.FORWARD or DispatcherType.INCLUDE respectively, while a
dispatcher type of an asynchronous request dispatched via one of the
AsyncContext.dispatch methods is given as DispatcherType.ASYNC. Finally
the dispatcher type of a request dispatched to an error page by the container’s
error handling mechanism is given as DispatcherType.ERROR.

■ AsyncContext - This class represents the execution context for the asynchronous
operation that was started on the ServletRequest. An AsyncContext is created
and initialized by a call to ServletRequest.startAsync as described above. The
following methods are in the AsyncContext:

■ public ServletRequest getRequest() - returns the request that was used to
initialize the AsyncContext by calling one of the startAsync methods. Calling
getRequest when complete or any of the dispatch methods has been
previously called in the asynchronous cycle will result in an
IllegalStateException.

■ public ServletResponse getResponse() - returns the response that was used
to initialize the AsyncContext by calling one of the startAsync methods.
Calling getResponse when complete or any of the dispatch methods has
been previously called in the asynchronous cycle will result in an
IllegalStateException.
Chapter 2 The Servlet Interface 13

■ public void setTimeout(long timeoutMilliseconds) - Sets the time out for
the asynchronous processing to occur in milliseconds. A call to this method
overrides the time out set by the container. If the time out is not specified via
the call to the setTimeout, then a container default will be used. A value of 0
or less indicates that the asynchronous operation will never time out. The time
out applies to the AsyncContext once the container-initiated dispatch during
which one of the ServletRequest.startAsync methods was called has
returned to the container. It is illegal to set the time out if this method is called
after the container-initiated dispatch on which the asynchronous cycle was
started has returned to the container and will result in an
IllegalStateException.

■ public long getTimeout() - Gets the time out, in milliseconds, associated
with the AsyncContext. This method returns the container’s default time out,
or the time out value set via the most recent invocation of setTimeout method.

■ public void addListener(AsyncListener listener, ServletRequest

req, ServletResponse res) - Registers the given listener for notifications of
onTimeout, onError, onComplete or onStartAsync. The first three are
associated with the most recent asynchronous cycle started by calling one of
the ServletRequest.startAsync methods. The onStartAsync is associated to a
new asynchronous cycle via one of the ServletRequest.startAsync methods.
Async listeners will be notified in the order in which they were added to the
request. The request and response objects passed in to the method are the exact
same ones that are available from the AsyncEvent.getSuppliedRequest()
and AsyncEvent.getSuppliedResponse()when the AsyncListener is notified.
These objects should not be read from or written to, because additional
wrapping may have occurred since the given AsyncListener was registered,
but may be used in order to release any resources associated with them. It is
illegal to call this method after the container-initiated dispatch on which the
asynchronous cycle was started has returned to the container and before a new
asynchronous cycle was started and will result in an IllegalStateException.

■ public <T extends AsyncListener> createListener(Class<T> clazz) -
Instantiates the given AsyncListener class. The returned AsyncListener
instance may be further customized before it is registered with the
AsyncContext via a call to one of the addListener methods specified below.
The given AsyncListener class MUST define a zero argument constructor,
which is used to instantiate it. This method supports any annotations
applicable to the AsyncListener.

■ public void addListener(AsyncListener) - Registers the given listener for
notifications of onTimeout, onError, onComplete or onStartAsync. The first
three are associated with the most recent asynchronous cycle started by calling
one of the ServletRequest.startAsync methods. The onStartAsync is
associated to a new asynchronous cycle via one of the ServletRequest.startAsync
methods. If startAsync(req, res) or startAsync() is called on the request,
the exact same request and response objects are available from the AsyncEvent
when the AsyncListener is notified. The request and response may or may not
be wrapped. Async listeners will be notified in the order in which they were
added to the request. It is illegal to call this method after the container-initiated
14 Java Servlet Specification •

dispatch on which the asynchronous cycle was started has returned to the
container and before a new asynchronous cycle was started and will result in
an IllegalStateException.

■ public void dispatch(String path) - Dispatches the request and response
that were used to initialize the AsyncContext to the resource with the given
path. The given path is interpreted as relative to the ServletContext that
initialized the AsyncContext. All path related query methods of the request
MUST reflect the dispatch target, while the original request URI, context path,
path info and query string may be obtained from the request attributes as
defined in Section 9.7.2, “Dispatched Request Parameters” on page 9-98. These
attributes MUST always reflect the original path elements, even after multiple
dispatches.

■ public void dispatch() - Provided as a convenience to dispatch the request
and response used to initialize the AsyncContext as follows. If the
AsyncContext was initialized via the startAsync(ServletRequest,
ServletResponse) and the request passed is an instance of
HttpServletRequest, then the dispatch is to the URI returned by
HttpServletRequest.getRequestURI(). Otherwise the dispatch is to the URI
of the request when it was last dispatched by the container. The examples
CODE EXAMPLE 2-1, CODE EXAMPLE 2-2 and CODE EXAMPLE 2-3 shown below
demonstrate what the target URI of dispatch would be in the different cases.

CODE EXAMPLE 2-1

CODE EXAMPLE 2-2

CODE EXAMPLE 2-3

// REQUEST to /url/A

AsyncContext ac = request.startAsync();

...

ac.dispatch(); // ASYNC dispatch to /url/A

// REQUEST to /url/A

// FORWARD to /url/B

request.getRequestDispatcher(“/url/B”).forward(request,
response);

// Start async operation from within the target of the FORWARD

AsyncContext ac = request.startAsync();

ac.dispatch(); // ASYNC dispatch to /url/A

// REQUEST to /url/A

// FORWARD to /url/B

request.getRequestDispatcher(“/url/B”).forward(request,
response);
Chapter 2 The Servlet Interface 15

■ public void dispatch(ServletContext context, String path) -
dispatches the request and response used to initialize the AsyncContext to the
resource with the given path in the given ServletContext.

■ For all the 3 variations of the dispatch methods defined above, calls to the
methods returns immediately after passing the request and response objects to
a container managed thread, on which the dispatch operation will be
performed. The dispatcher type of the request is set to ASYNC. Unlike
RequestDispatcher.forward(ServletRequest, ServletResponse)
dispatches, the response buffer and headers will not be reset, and it is legal to
dispatch even if the response has already been committed. Control over the
request and response is delegated to the dispatch target, and the response will
be closed when the dispatch target has completed execution, unless
ServletRequest.startAsync() or
ServletRequest.startAsync(ServletRequest, ServletResponse) is called.
If any of the dispatch methods are called before the container-initiated dispatch
that called startAsync has returned to the container, then the call will not take
effect until after the container-initiated dispatch has returned to the container.
Invocation of the AsyncListener.onComplete(AsyncEvent),
AsyncListener.onTimeout(AsyncEvent)and
AsyncListener.onError(AsyncEvent) will also be delayed till after the
container-initiated dispatch has returned to the container. There can be at most
one asynchronous dispatch operation per asynchronous cycle, which is started
by a call to one of the ServletRequest.startAsync methods. There can be at
most one asynchronous dispatch per asynchronous cycle, which is started by a
call to ServletRequest.startAsync. Any attempt to perform additional
asynchronous dispatch operation within the same asynchronous cycle is illegal
and will result in an IllegalStateException. If startAsync is subsequently
called on the dispatched request, then any of the dispatch methods may be
called with the same restriction as above.

■ Any errors or exceptions that may occur during the execution of the dispatch
methods MUST be caught and handled by the container as follows:

i. invoke the AsyncListener.onError(AsyncEvent) method for all instances
of the AsyncListener registered with the ServletRequest for which the
AsyncContext was created and make the caught Throwable available via the
AsyncEvent.getThrowable().

ii. If none of the listeners called AsyncContext.complete or any of the
AsyncContext.dispatch methods, then perform an error dispatch with a
status code equal to HttpServletResponse.SC_INTERNAL_SERVER_ERROR
and make the Throwable available as the value of the
RequestDispatcher.ERROR_EXCEPTION request attribute.

// Start async operation from within the target of the FORWARD

AsyncContext ac = request.startAsync(request, response);

ac.dispatch(); // ASYNC dispatch to /url/B
16 Java Servlet Specification •

iii. If no matching error page is found, or the error page does not call
AsyncContext.complete() or any of the AsyncContext.dispatch methods,
then the container MUST call AsyncContext.complete.

■ public boolean hasOriginalRequestAndResponse() - This method checks if
the AsyncContext was initialized with the original request and response
objects by calling ServletRequest.startAsync() or if it was initialized by
calling ServletRequest.startAsync(ServletRequest, ServletResponse)
and neither the ServletRequest nor the ServletResponse argument carried
any application provided wrappers, in which case it returns true. If the
AsyncContext was initialized with wrapped request and/or response objects
using ServletRequest.startAsync(ServletRequest, ServletResponse), it
returns false. This information may be used by filters invoked in the outbound
direction, after a request was put into asynchronous mode, to determine
whether any request and/or response wrappers that they added during their
inbound invocation need to be preserved for the duration of the asynchronous
operation or may be released.

■ public void start(Runnable r) - This method causes the container to
dispatch a thread, possibly from a managed thread pool, to run the specified
Runnable. The container may propagate appropriate contextual information to
the Runnable.

■ public void complete() - If request.startAsync is called then this method
MUST be called to complete the async processing and commit and close the
response. The complete method can be invoked by the container if the request
is dispatched to a servlet that does not support async processing, or the target
servlet called by AsyncContext.dispatch does not do a subsequent call to
startAsync. In this case, it is the container's responsibility to call complete()
as soon as that servlet's service method is exited. An IllegalStateException
MUST be thrown if startAsync was not called. It is legal to call this method
anytime after a call to ServletRequest.startAsync() or
ServletRequest.startAsync(ServletRequest, ServletResponse) and
before a call to one of the dispatch methods. If this method is called before the
container-initiated dispatch that called startAsync has returned to the
container, then the call will not take effect until after the container-initiated
dispatch has returned to the container. Invocation of the
AsyncListener.onComplete(AsyncEvent) will also be delayed till after the
container-initiated dispatch has returned to the container.

■ ServletRequestWrapper

■ public boolean isWrapperFor(ServletRequest req)- Checks recursively if
this wrapper wraps the given ServletRequest and returns true if it does, else
it returns false

■ ServletResponseWrapper

■ public boolean isWrapperFor(ServletResponse res)- Checks recursively if
this wrapper wraps the given ServletResponse and returns true if it does,
else it returns false.

■ AsyncListener
Chapter 2 The Servlet Interface 17

■ public void onComplete(AsyncEvent event) - Is used to notify the listener
of completion of the asynchronous operation started on the ServletRequest.

■ public void onTimeout(AsyncEvent event) - Is used to notify the listener of
a time out of the asynchronous operation started on the ServletRequest.

■ public void onError(AsyncEvent event) - Is used to notify the listener that
the asynchronous operation has failed to complete.

■ public void onStartAsync(AsyncEvent event) - Is used to notify the
listener that a new asynchronous cycle is being initiated via a call to one of the
ServletRequest.startAsync methods. The AsyncContext corresponding to
the asynchronous operation that is being reinitialized may be obtained by
calling AsyncEvent.getAsyncContext on the given event.

■ In the event that an asynchronous operation times out, the container must run
through the following steps:

■ Invoke the AsyncListener.onTimeout method on all the AsyncListener
instances registered with the ServletRequest on which the asynchronous
operation was initiated.

■ If none of the listeners called AsyncContext.complete() or any of the
AsyncContext.dispatch methods, perform an error dispatch with a status
code equal to HttpServletResponse.SC_INTERNAL_SERVER_ERROR.

■ If no matching error page was found, or the error page did not call
AsyncContext.complete() or any of the AsyncContext.dispatch methods,
the container MUST call AsyncContext.complete().

■ If an exception is thrown while invoking methods in a AsyncListener, it is logged
and will not affect the invocation of any other AsyncListeners.

■ Async processing in JSP would not be supported by default as it is used for
content generation and async processing would have to be done before the
content generation. It is up to the container how to handle this case. Once all the
async activities are done, a dispatch to the JSP page using the
AsyncContext.dispatch can be used for generating content.

■ Figure 2-1 shown below is a diagram depicting the state transitions for various
asynchronous operations.
18 Java Servlet Specification •

FIGURE 2-1 State transition diagram for asynchronous operations
Chapter 2 The Servlet Interface 19

2.3.3.4 Thread Safety

Other than the startAsync and complete methods, implementations of the request
and response objects are not guaranteed to be thread safe. This means that they
should either only be used within the scope of the request handling thread or the
application must ensure that access to the request and response objects are thread
safe.

If a thread created by the application uses the container-managed objects, such as the
request or response object, those objects must be accessed only within the object’s
life cycle as defined in sections 3.10 and 5.6. Be aware that other than the
startAsync, and complete methods, the request and response objects are not thread
safe. If those objects were accessed in the multiple threads, the access should be
synchronized or be done through a wrapper to add the thread safety, for instance,
synchronizing the call of the methods to access the request attribute, or using a local
output stream for the response object within a thread.

2.3.3.5 Upgrade Processing

In HTTP/1.1, the Upgrade general-header allows the client to specify the additional
communication protocols that it supports and would like to use. If the server finds it
appropriate to switch protocols, then new protocols will be used in subsequent
communication.

The servlet container provides an HTTP upgrade mechanism. However the servlet
container itself does not have knowledge about the upgraded protocol. The protocol
processing is encapsulated in the HttpUpgradeHandler. Data reading or writing
between the servlet container and the HttpUpgradeHandler is in byte streams.

When an upgrade request is received, the servlet can invoke the
HttpServletRequest.upgrade method, which starts the upgrade process. This
method instantiates the given HttpUpgradeHandler class. The returned
HttpUpgradeHandler instance may be further customized. The application prepares
and sends an appropriate response to the client. After exiting the service method
of the servlet, the servlet container completes the processing of all filters and marks
the connection to be handled by the HttpUpgradeHandler. It then calls the
HttpUpgradeHandler's init method, passing a WebConnection to allow the protocol
handler access to the data streams.

The servlet filters only process the initial HTTP request and response. They are not
involved in subsequent communications. In other words, they are not invoked once
the request has been upgraded.
20 Java Servlet Specification •

The HttpUpgradeHandler may use non blocking IO to consume and produce
messages.

When the upgrade processing is done, HttpUpgradeHandler.destroy will be
invoked.

2.3.4 End of Service
The servlet container is not required to keep a servlet loaded for any particular
period of time. A servlet instance may be kept active in a servlet container for a
period of milliseconds, for the lifetime of the servlet container (which could be a
number of days, months, or years), or any amount of time in between.

When the servlet container determines that a servlet should be removed from
service, it calls the destroy method of the Servlet interface to allow the servlet to
release any resources it is using and save any persistent state. For example, the
container may do this when it wants to conserve memory resources, or when it is
being shut down.

Before the servlet container calls the destroy method, it must allow any threads that
are currently running in the service method of the servlet to complete execution, or
exceed a server-defined time limit.

Once the destroy method is called on a servlet instance, the container may not route
other requests to that instance of the servlet. If the container needs to enable the
servlet again, it must do so with a new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the servlet
instance so that it is eligible for garbage collection.
Chapter 2 The Servlet Interface 21

22 Java Servlet Specification •

CHAPTER 3

The Request

The request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server in the HTTP
headers and the message body of the request.

3.1 HTTP Protocol Parameters
Request parameters for the servlet are the strings sent by the client to a servlet
container as part of its request. When the request is an HttpServletRequest object,
and conditions set out in ”When Parameters Are Available” on page 24 are met, the
container populates the parameters from the URI query string and POST-ed data.

The parameters are stored as a set of name-value pairs. Multiple parameter values
can exist for any given parameter name. The following methods of the
ServletRequest interface are available to access parameters:

■ getParameter
■ getParameterNames
■ getParameterValues
■ getParameterMap

The getParameterValues method returns an array of String objects containing all
the parameter values associated with a parameter name. The value returned from
the getParameter method must be the first value in the array of String objects
returned by getParameterValues. The getParameterMap method returns a
java.util.Map of the parameter of the request, which contains names as keys and
parameter values as map values.

Data from the query string and the post body are aggregated into the request
parameter set. Query string data is presented before post body data. For example, if
a request is made with a query string of a=hello and a post body of a=goodbye&a=
world, the resulting parameter set would be ordered a=(hello, goodbye, world).
23

Path parameters that are part of a GET request (as defined by HTTP 1.1) are not
exposed by these APIs. They must be parsed from the String values returned by the
getRequestURI method or the getPathInfo method.

3.1.1 When Parameters Are Available
The following are the conditions that must be met before post form data will be
populated to the parameter set:

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST.

3. The content type is application/x-www-form-urlencoded.

4. The servlet has made an initial call of any of the getParameter family of methods
on the request object.

If the conditions are not met and the post form data is not included in the parameter
set, the post data must still be available to the servlet via the request object’s input
stream. If the conditions are met, post form data will no longer be available for
reading directly from the request object’s input stream.

3.2 File upload
Servlet container allows files to be uploaded when data is sent as multipart/form-
data.

The servlet container provides multipart/form-data processing if any one of the
following conditions is met.

■ The servlet handling the request is annotated with the @MultipartConfig as
defined in Section 8.1.5, “@MultipartConfig” on page 8-68.

■ Deployment descriptors contain a multipart-config element for the servlet
handling the request.

How data in a request of type multipart/form-data is made available depends on
whether the servlet container provides multipart/form-data processing:

■ If the servlet container provides multipart/form-data processing, the data is
made available through the following methods in HttpServletRequest:
■ public Collection<Part> getParts()

■ public Part getPart(String name)
24 Java Servlet Specification •

Each part provides access to the headers, content type related with it and the
content via the Part.getInputStream method.

For parts with form-data as the Content-Disposition, but without a filename,
the string value of the part will also be available through the getParameter and
getParameterValues methods on HttpServletRequest, using the name of the
part.

■ If the servlet container does not provide the multi-part/form-data processing,
the data will be available through the HttpServletReuqest.getInputStream.

3.3 Attributes
Attributes are objects associated with a request. Attributes may be set by the
container to express information that otherwise could not be expressed via the API,
or may be set by a servlet to communicate information to another servlet (via the
RequestDispatcher). Attributes are accessed with the following methods of the
ServletRequest interface:

■ getAttribute
■ getAttributeNames
■ setAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the prefixes of java. and javax. are reserved for
definition by this specification. Similarly, attribute names beginning with the
prefixes of sun., and com.sun. are reserved for definition by Sun Microsystems. It is
suggested that all attributes placed in the attribute set be named in accordance with
the reverse domain name convention suggested by the Java Programming Language
Specification1 for package naming.

3.4 Headers
A servlet can access the headers of an HTTP request through the following methods
of the HttpServletRequest interface:

■ getHeader
■ getHeaders
■ getHeaderNames

1. The Java Programming Language Specification is available at
http://java.sun.com/docs/books/jls
Chapter 3 The Request 25

The getHeader method returns a header given the name of the header. There can be
multiple headers with the same name, e.g. Cache-Control headers, in an HTTP
request. If there are multiple headers with the same name, the getHeader method
returns the first header in the request. The getHeaders method allows access to all
the header values associated with a particular header name, returning an
Enumeration of String objects.

Headers may contain String representations of int or Date data. The following
convenience methods of the HttpServletRequest interface provide access to header
data in a one of these formats:

■ getIntHeader
■ getDateHeader

If the getIntHeader method cannot translate the header value to an int, a
NumberFormatException is thrown. If the getDateHeader method cannot translate
the header to a Date object, an IllegalArgumentException is thrown.

3.5 Request Path Elements
The request path that leads to a servlet servicing a request is composed of many
important sections. The following elements are obtained from the request URI path
and exposed via the request object:

■ Context Path: The path prefix associated with the ServletContext that this
servlet is a part of. If this context is the “default” context rooted at the base of the
Web server’s URL name space, this path will be an empty string. Otherwise, if the
context is not rooted at the root of the server’s name space, the path starts with a
/ character but does not end with a / character.

■ Servlet Path: The path section that directly corresponds to the mapping which
activated this request. This path starts with a ’/’ character except in the case
where the request is matched with the ‘/*’ or ““ pattern, in which case it is an
empty string.

■ PathInfo: The part of the request path that is not part of the Context Path or the
Servlet Path. It is either null if there is no extra path, or is a string with a leading
‘/’.

The following methods exist in the HttpServletRequest interface to access this
information:

■ getContextPath
■ getServletPath
■ getPathInfo

It is important to note that, except for URL encoding differences between the request
URI and the path parts, the following equation is always true:
26 Java Servlet Specification •

requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following:

The following behavior is observed:

3.6 Path Translation Methods
There are two convenience methods in the API which allow the Developer to obtain
the file system path equivalent to a particular path. These methods are:

■ ServletContext.getRealPath
■ HttpServletRequest.getPathTranslated

The getRealPath method takes a String argument and returns a String
representation of a file on the local file system to which a path corresponds. The
getPathTranslated method computes the real path of the pathInfo of the request.

TABLE 3-1 Example Context Set Up

Context Path /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

TABLE 3-2 Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null
Chapter 3 The Request 27

In situations where the servlet container cannot determine a valid file path for these
methods, such as when the Web application is executed from an archive, on a remote
file system not accessible locally, or in a database, these methods must return null.
Resources inside the META-INF/resources directory of JAR file must be considered
only if the container has unpacked them from their containing JAR file when a call to
getRealPath() is made, and in this case MUST return the unpacked location.

3.7 Non Blocking IO
Non-blocking request processing in the Web Container helps improve the ever
increasing demand for improved Web Container scalability, increase the number of
connections that can simultaneously be handled by the Web Container. Non-
blocking IO in the Servlet container allows developers to read data as it becomes
available or write data when possible to do so. Non-blocking IO only works with
async request processing in Servlets and Filters as defined in Section 2.3.3.3,
“Asynchronous processing” on page 2-10

The ReadListener provides the following callback methods for non blocking IO -
■ ReadListener

■ onDataAvailable(). The onDataAvailable method is invoked on the
ReadListener when data is available to read from the incoming request
stream. The container will invoke the method the first time when data is
available to read. The container will subsequently invoke the onDataAvailable
method if and only if isReady method on ServletInputStream, described
below, returns false.

■ onAllDataRead(). The onAllDataRead method is invoked when you have
finished reading all the data for the ServletRequest for which the listener was
registered.

■ onError(Throwable t). The onError method is invoked if there is any error or
exception that occurs while processing the request.

In addition to the ReadListener defined above, the following methods have been
added to ServletInputStream class -
■ ServletInputStream

■ boolean isFinished(). The isFinished method returns true when all the
data for the request associated with the ServletInputStream has been read.
Otherwise it returns false.

■ boolean isReady(). The isReady method returns true if data can be read
without blocking. If no data can be read without blocking it returns false. If
isReady returns false it is illegal to call the read method and an
IllegalStateException MUST be thrown.
28 Java Servlet Specification •

■ void setReadListener(ReadListener listener). Sets the ReadListener
defined above to get invoked to read data in a non-blocking fashion. Once the
listener is associated for the given ServletInputStream, the container invokes
the methods on the ReadListener when data is available to read, all the data
has been read or if there was an error processing the request. Registering a
ReadListener will start non-blocking IO. It is illegal to switch to the traditional
blocking IO at that point and an IllegalStateException MUST be thrown. A
subsequent call to setReadListener in the scope of the current request is
illegal and an IllegalStateException MUST be thrown.

3.8 Cookies
The HttpServletRequest interface provides the getCookies method to obtain an
array of cookies that are present in the request. These cookies are data sent from the
client to the server on every request that the client makes. Typically, the only
information that the client sends back as part of a cookie is the cookie name and the
cookie value. Other cookie attributes that can be set when the cookie is sent to the
browser, such as comments, are not typically returned. The specification also allows
for the cookies to be HttpOnly cookies. HttpOnly cookies indicate to the client that
they should not be exposed to client-side scripting code (It’s not filtered out unless
the client knows to look for this attribute). The use of HttpOnly cookies helps
mitigate certain kinds of cross-site scripting attacks.

3.9 SSL Attributes
If a request has been transmitted over a secure protocol, such as HTTPS, this
information must be exposed via the isSecure method of the ServletRequest
interface. The Web container must expose the following attributes to the servlet
programmer:

TABLE 3-3 Protocol Attributes

Attribute Attribute Name Java Type

cipher suite javax.servlet.request.cipher_suite String

bit size of the
algorithm

javax.servlet.request.key_size Integer

SSL session id javax.servlet.request.ssl_session_id String
Chapter 3 The Request 29

If there is an SSL certificate associated with the request, it must be exposed by the
servlet container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via a ServletRequest
attribute of javax.servlet.request.X509Certificate.

The order of this array is defined as being in ascending order of trust. The first
certificate in the chain is the one set by the client, the next is the one used to
authenticate the first, and so on.

3.10 Internationalization
Clients may optionally indicate to a Web server what language they would prefer
the response be given in. This information can be communicated from the client
using the Accept-Language header along with other mechanisms described in the
HTTP/1.1 specification. The following methods are provided in the ServletRequest
interface to determine the preferred locale of the sender:

■ getLocale
■ getLocales

The getLocale method will return the preferred locale for which the client wants to
accept content. See section 14.4 of RFC 2616 (HTTP/1.1) for more information about
how the Accept-Language header must be interpreted to determine the preferred
language of the client.

The getLocales method will return an Enumeration of Locale objects indicating, in
decreasing order starting with the preferred locale, the locales that are acceptable to
the client.

If no preferred locale is specified by the client, the locale returned by the getLocale
method must be the default locale for the servlet container and the getLocales
method must contain an enumeration of a single Locale element of the default
locale.

3.11 Request data encoding
Currently, many browsers do not send a char encoding qualifier with the Content-
Type header, leaving open the determination of the character encoding for reading
HTTP requests. The default encoding of a request the container uses to create the
request reader and parse POST data must be “ISO-8859-1” if none has been specified
30 Java Servlet Specification •

by the client request. However, in order to indicate to the developer, in this case, the
failure of the client to send a character encoding, the container returns null from the
getCharacterEncoding method.

If the client hasn’t set character encoding and the request data is encoded with a
different encoding than the default as described above, breakage can occur. To
remedy this situation, a new method setCharacterEncoding(String enc) has been
added to the ServletRequest interface. Developers can override the character
encoding supplied by the container by calling this method. It must be called prior to
parsing any post data or reading any input from the request. Calling this method
once data has been read will not affect the encoding.

3.12 Lifetime of the Request Object
Each request object is valid only within the scope of a servlet’s service method, or
within the scope of a filter’s doFilter method, unless the asynchronous processing
is enabled for the component and the startAsync method is invoked on the request
object. In the case where asynchronous processing occurs, the request object remains
valid until complete is invoked on the AsyncContext. Containers commonly recycle
request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining references to request objects
for which startAsync has not been called outside the scope described above is not
recommended as it may have indeterminate results.
Chapter 3 The Request 31

32 Java Servlet Specification •

CHAPTER 4

Servlet Context

4.1 Introduction to the ServletContext
Interface
The ServletContext interface defines a servlet’s view of the Web application within
which the servlet is running. The Container Provider is responsible for providing an
implementation of the ServletContext interface in the servlet container. Using the
ServletContext object, a servlet can log events, obtain URL references to resources,
and set and store attributes that other servlets in the context can access.

A ServletContext is rooted at a known path within a Web server. For example, a
servlet context could be located at http://www.mycorp.com/catalog. All requests
that begin with the /catalog request path, known as the context path, are routed to
the Web application associated with the ServletContext.

4.2 Scope of a ServletContext Interface
There is one instance object of the ServletContext interface associated with each
Web application deployed into a container. In cases where the container is
distributed over many virtual machines, a Web application will have an instance of
the ServletContext for each JVM.
33

Servlets in a container that were not deployed as part of a Web application are
implicitly part of a “default” Web application and have a default ServletContext. In
a distributed container, the default ServletContext is non-distributable and must
only exist in one JVM.

4.3 Initialization Parameters
The following methods of the ServletContext interface allow the servlet access to
context initialization parameters associated with a Web application as specified by
the Application Developer in the deployment descriptor:

■ getInitParameter
■ getInitParameterNames

Initialization parameters are used by an Application Developer to convey setup
information. Typical examples are a Webmaster’s e-mail address, or the name of a
system that holds critical data.

4.4 Configuration methods
The following methods are added to ServletContext since Servlet 3.0 to enable
programmatic definition of servlets, filters and the url pattern that they map to.
These methods can only be called during the initialization of the application either
from the contexInitialized method of a ServletContextListener
implementation or from the onStartup method of a
ServletContainerInitializer implementation. In addition to adding Servlets
and Filters, one can also look up an instance of a Registration object
corresponding to a Servlet or Filter or a map of all the Registration objects for the
Servlets or Filters. If the ServletContext passed to the ServletContextListener’s
contextInitialized method was neither declared in web.xml or web-
fragment.xml nor annotated with @WebListener then an
UnsupportedOperationException MUST be thrown for all the methods defined
for programmatic configuration of servlets, filters and listeners.
34 Java Servlet Specification •

4.4.1 Programmatically adding and configuring
Servlets
The ability to programmatically add a servlet to a context is useful for framework
developers. For example a framework could declare a controller servlet using this
method. The return value of this method is a ServletRegistration or a
ServletRegistration.Dynamic object which further allows you to setup the
other parameters of the servlet like init-params, url-mappings etc. There are
three overloaded versions of the method as described below.

4.4.1.1 addServlet(String servletName, String className)

This method allows the application to declare a servlet programmatically. It adds the
servlet with the given name, and class name to the servlet context.

4.4.1.2 addServlet(String servletName, Servlet servlet)

This method allows the application to declare a servlet programmatically. It adds the
servlet with the given name, and servlet instance to the servlet context.

4.4.1.3 addServlet(String servletName, Class <? extends Servlet>
servletClass)

This method allows the application to declare a servlet programmatically. It adds the
servlet with the given name, and an instance of the servlet class to the servlet
context.

4.4.1.4 <T extends Servlet> T createServlet(Class<T> clazz)

This method instantiates the given Servlet class. The method must support all the
annotations applicable to Servlets except @WebServlet. The returned Servlet
instance may be further customized before it is registered with the
ServletContext via a call to addServlet(String, Servlet) as defined above.
Chapter 4 Servlet Context 35

4.4.1.5 ServletRegistration getServletRegistration(String
servletName)

This method returns the ServletRegistration corresponding to the servlet with
the given name, or null if no ServletRegistration exists under that name. An
UnsupportedOperationException is thrown if the ServletContext was
passed to the contextInitialized method of a ServletContextListener that
was neither declared in the web.xml or web-fragment.xml, nor annotated with
javax.servlet.annotation.WebListener.

4.4.1.6 Map<String, ? extends ServletRegistration>
getServletRegistrations()

This method returns a map of ServletRegistration objects, keyed by name
corresponding to all servlets registered with the ServletContext. If there are no
servlets registered with the ServletContext an empty map is returned. The returned
Map includes the ServletRegistration objects corresponding to all declared and
annotated servlets, as well as the ServletRegistration objects corresponding to all
servlets that have been added via one of the addServlet methods. Any changes to
the returned Map MUST not affect the ServletContext. An
UnsupportedOperationException is thrown if the ServletContext was
passed to the contextInitialized method of a ServletContextListener that
was neither declared in the web.xml or web-fragment.xml, nor annotated with
javax.servlet.annotation.WebListener.

4.4.2 Programmatically adding and configuring Filters

4.4.2.1 addFilter(String filterName, String className)

This method allows the application to declare a filter programmatically. It adds the
filter with the given name, and class name to the web application.

4.4.2.2 addFilter(String filterName, Filter filter)

This method allows the application to declare a filter programmatically. It adds the
filter with the given name, and filter instance to the web application.
36 Java Servlet Specification •

4.4.2.3 addFilter(String filterName, Class <? extends Filter>
filterClass)

This method allows the application to declare a filter programmatically. It adds the
filter with the given name, and an instance of the filter class to the web application.

4.4.2.4 <T extends Filter> T createFilter(Class<T> clazz)

This method instantiates the given Filter class. The method must support all the
annotations applicable to Filters. The returned Filter instance may be further
customized before it is registered with the ServletContext via a call to
addFilter(String, Filter) as defined above. The given Filter class must
define a zero argument constructor, which is used to instantiate it.

4.4.2.5 FilterRegistration getFilterRegistration(String filterName)

This method returns the FilterRegistration corresponding to the filter with the
given name, or null if no FilterRegistration exists under that name. An
UnsupportedOperationException is thrown if the ServletContext was
passed to the contextInitialized method of a ServletContextListener that
was neither declared in the web.xml or web-fragment.xml, nor annotated with
javax.servlet.annotation.WebListener.

4.4.2.6 Map<String, ? extends FilterRegistration>
getServletRegistrations()

This method returns a map of ServletRegistration objects, keyed by name
corresponding to all filters registered with the ServletContext. If there are no filters
registered with the ServletContext an empty map is returned. The returned Map
includes the FilterRegistration objects corresponding to all declared and annotated
filters, as well as the FilterRegistration objects corresponding to all filters that have
been added via one of the addFilter methods. Any changes to the returned Map
MUST not affect the ServletContext. An UnsupportedOperationException is
thrown if the ServletContext was passed to the contextInitialized method
of a ServletContextListener that was neither declared in the web.xml or web-
fragment.xml, nor annotated with
javax.servlet.annotation.WebListener.
Chapter 4 Servlet Context 37

4.4.3 Programmatically adding and configuring
Listeners

4.4.3.1 void addListener(String className)

Add the listener with the given class name to the ServletContext. The class with
the given name will be loaded using the classloader associated with the application
represented by the ServletContext, and MUST implement one or more of the
following interfaces:

■ javax.servlet.ServletContextAttributeListener

■ javax.servlet.ServletRequestListener

■ javax.servlet.ServletRequestAttributeListener

■ javax.servlet.http.HttpSessionListener

■ javax.servlet.http.HttpSessionAttributeListener

■ javax.servlet.http.HttpSessionIdListener

If the ServletContext was passed to the ServletContainerInitializer’s
onStartup method, then the class with the given name MAY also implement
javax.servlet.ServletContextListener in addition to the interfaces listed
above. As part of this method call, the container MUST load the class with the
specified class name to ensure that it implements one of the required interfaces. If
the class with the given name implements a listener interface whose invocation
order corresponds to the declaration order, that is, if it implements
javax.servlet.ServletRequestListener,
javax.servlet.ServletContextListener or
javax.servlet.http.HttpSessionListener, then the new listener will be
added to the end of the ordered list of listeners of that interface.

4.4.3.2 <T extends EventListener> void addListener(T t)

Add the given listener to the ServletContext. The given listener MUST be an
instance of one or more of the following interfaces:

■ javax.servlet.ServletContextAttributeListener

■ javax.servlet.ServletRequestListener

■ javax.servlet.ServletRequestAttributeListener

■ javax.servlet.http.HttpSessionListener

■ javax.servlet.http.HttpSessionAttributeListener

■ javax.servlet.http.HttpSessionIdListener
38 Java Servlet Specification •

If the ServletContext was passed to the ServletContainerInitializer’s
onStartup method, then the given listener MAY also be an instance of
javax.servlet.ServletContextListener in addition to the interfaces listed
above. If the given listener is an instance of a listener interface whose invocation
order corresponds to the declaration order, that is, if it implements
javax.servlet.ServletRequestListener,
avax.servlet.ServletContextListener or
javax.servlet.http.HttpSessionListener, then the new listener will be
added to the end of the ordered list of listeners of that interface.

4.4.3.3 void addListener(Class <? extends EventListener>
listenerClass)

Add the listener of the given class type to the ServletContext. The given listener
class MUST implement one or more of the following interfaces:

■ javax.servlet.ServletContextAttributeListener

■ javax.servlet.ServletRequestListener

■ javax.servlet.ServletRequestAttributeListener

■ javax.servlet.http.HttpSessionListener

■ javax.servlet.http.HttpSessionAttributeListener

■ javax.servlet.http.HttpSessionIdListener

If the ServletContext was passed to the ServletContainerInitializer’s
onStartup method, then the given listener class MAY also implement
javax.servlet.ServletContextListener in addition to the interfaces listed
above. If the given listener class implements a listener interface whose invocation
order corresponds to the declaration order, that is, if it implements
javax.servlet.ServletRequestListener,
avax.servlet.ServletContextListener or
javax.servlet.http.HttpSessionListener, then the new listener will be
added to the end of the ordered list of listeners of that interface.

4.4.3.4 <T extends EventListener> void createListener(Class<T>
clazz)

This method instantiates the given EventListener class. The specified EventListener
class MUST implement at least one of the following interfaces:

■ javax.servlet.ServletContextAttributeListener

■ javax.servlet.ServletRequestListener

■ javax.servlet.ServletRequestAttributeListener

■ javax.servlet.http.HttpSessionListener
Chapter 4 Servlet Context 39

■ javax.servlet.http.HttpSessionAttributeListener

■ javax.servlet.http.HttpSessionIdListener

This method MUST support all annotations applicable to the above listener
interfaces as defined by this specification. The returned EventListener instance may
be further customized before it is registered with the ServletContext via a call to
addListener(T t). The given EventListener class MUST define a zero argument
constructor, which is used to instantiate it.

4.4.3.5 Annotation processing requirements for programmatically
added Servlets, Filters and Listeners

When using the programmatic API to add a servlet or create a servlet, apart from the
addServlet that takes an instance, the following annotations must be introspected in
the class in question and the metadata defined in it MUST be used unless it is
overridden by calls to the API in the ServletRegistration.Dynamic /
ServletRegistration.

@ServletSecurity, @RunAs, @DeclareRoles, @MultipartConfig.

For Filters and Listeners no annotations need to be introspected.

Resource injection on all components (Servlets, Filters and Listeners) added
programmatically or created programmatically, other than the ones added via the
methods that takes an instance, will only be supported when the component is a
Managed Bean. For details about what is a Managed Bean please refer to the
Managed Bean specification defined as part of Java EE 6 and JSR 299.

4.5 Context Attributes
A servlet can bind an object attribute into the context by name. Any attribute bound
into a context is available to any other servlet that is part of the same Web
application. The following methods of ServletContext interface allow access to this
functionality:

■ setAttribute
■ getAttribute
■ getAttributeNames
■ removeAttribute
40 Java Servlet Specification •

4.5.1 Context Attributes in a Distributed Container
Context attributes are local to the JVM in which they were created. This prevents
ServletContext attributes from being a shared memory store in a distributed
container. When information needs to be shared between servlets running in a
distributed environment, the information should be placed into a session (See
Chapter 7, “Sessions”), stored in a database, or set in an Enterprise JavaBeans™
component.

4.6 Resources
The ServletContext interface provides direct access only to the hierarchy of static
content documents that are part of the Web application, including HTML, GIF, and
JPEG files, via the following methods of the ServletContext interface:

■ getResource
■ getResourceAsStream

The getResource and getResourceAsStream methods take a String with a leading
“/” as an argument that gives the path of the resource relative to the root of the
context or relative to the META-INF/resources directory of a JAR file inside the
web application’s WEB-INF/lib directory. These methods will first search the root
of the web application context for the requested resource before looking at any of the
JAR files in the WEB-INF/lib directory. The order in which the JAR files in the
WEB-INF/lib directory are scanned is undefined. This hierarchy of documents may
exist in the server’s file system, in a Web application archive file, on a remote server,
or at some other location.

These methods are not used to obtain dynamic content. For example, in a container
supporting the JavaServer Pages™ specification1, a method call of the form
getResource("/index.jsp") would return the JSP source code and not the
processed output. See Chapter 9, “Dispatching Requests” for more information
about accessing dynamic content.

The full listing of the resources in the Web application can be accessed using the
getResourcePaths(String path) method. The full details on the semantics of this
method may be found in the API documentation in this specification.

1. The JavaServer Pages™ specification can be found at http://java.sun.com/products/jsp
Chapter 4 Servlet Context 41

4.7 Multiple Hosts and Servlet Contexts
Web servers may support multiple logical hosts sharing one IP address on a server.
This capability is sometimes referred to as "virtual hosting". In this case, each logical
host must have its own servlet context or set of servlet contexts. Servlet contexts can
not be shared across virtual hosts.

4.8 Reloading Considerations
Although a Container Provider implementation of a class reloading scheme for ease
of development is not required, any such implementation must ensure that all
servlets, and classes that they may use2, are loaded in the scope of a single class
loader. This requirement is needed to guarantee that the application will behave as
expected by the Developer. As a development aid, the full semantics of notification
to session binding listeners should be supported by containers for use in the
monitoring of session termination upon class reloading.

Previous generations of containers created new class loaders to load a servlet,
distinct from class loaders used to load other servlets or classes used in the servlet
context. This could cause object references within a servlet context to point at
unexpected classes or objects, and cause unexpected behavior. The requirement is
needed to prevent problems caused by demand generation of new class loaders.

4.8.1 Temporary Working Directories
A temporary storage directory is required for each servlet context. Servlet containers
must provide a private temporary directory for each servlet context, and make it
available via the javax.servlet.context.tempdir context attribute. The objects
associated with the attribute must be of type java.io.File.

The requirement recognizes a common convenience provided in many servlet engine
implementations. The container is not required to maintain the contents of the
temporary directory when the servlet container restarts, but is required to ensure
that the contents of the temporary directory of one servlet context is not visible to
the servlet contexts of other Web applications running on the servlet container.

2. An exception is system classes that the servlet may use in a different class loader.
42 Java Servlet Specification •

CHAPTER 5

The Response

The response object encapsulates all information to be returned from the server to
the client. In the HTTP protocol, this information is transmitted from the server to
the client either by HTTP headers or the message body of the request.

5.1 Buffering
A servlet container is allowed, but not required, to buffer output going to the client
for efficiency purposes. Typically servers that do buffering make it the default, but
allow servlets to specify buffering parameters.

The following methods in the ServletResponse interface allow a servlet to access
and set buffering information:

■ getBufferSize
■ setBufferSize
■ isCommitted
■ reset
■ resetBuffer
■ flushBuffer

These methods are provided on the ServletResponse interface to allow buffering
operations to be performed whether the servlet is using a ServletOutputStream or
a Writer.

The getBufferSize method returns the size of the underlying buffer being used. If
no buffering is being used, this method must return the int value of 0 (zero).

The servlet can request a preferred buffer size by using the setBufferSize method.
The buffer assigned is not required to be the size requested by the servlet, but must
be at least as large as the size requested. This allows the container to reuse a set of
fixed size buffers, providing a larger buffer than requested if appropriate. The
43

method must be called before any content is written using a ServletOutputStream
or Writer. If any content has been written or the response object has been
committed, this method must throw an IllegalStateException.

The isCommitted method returns a boolean value indicating whether any response
bytes have been returned to the client. The flushBuffer method forces content in
the buffer to be written to the client.

The reset method clears data in the buffer when the response is not committed.
Headers, status codes and the state of calling getWriter or getOutputStream set
by the servlet prior to the reset call must be cleared as well. The resetBuffer
method clears content in the buffer if the response is not committed without clearing
the headers and status code.

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown. The response and its associated buffer will
be unchanged.

When using a buffer, the container must immediately flush the contents of a filled
buffer to the client. If this is the first data that is sent to the client, the response is
considered to be committed.

5.2 Headers
A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

■ setHeader
■ addHeader

The setHeader method sets a header with a given name and value. A previous
header is replaced by the new header. Where a set of header values exist for the
name, the values are cleared and replaced with the new value.

The addHeader method adds a header value to the set with a given name. If there are
no headers already associated with the name, a new set is created.

Headers may contain data that represents an int or a Date object. The following
convenience methods of the HttpServletResponse interface allow a servlet to set a
header using the correct formatting for the appropriate data type:

■ setIntHeader
■ setDateHeader
■ addIntHeader
■ addDateHeader
44 Java Servlet Specification •

To be successfully transmitted back to the client, headers must be set before the
response is committed. Headers set after the response is committed will be ignored
by the servlet container.

Servlet programmers are responsible for ensuring that the Content-Type header is
appropriately set in the response object for the content the servlet is generating. The
HTTP 1.1 specification does not require that this header be set in an HTTP response.
Servlet containers must not set a default content type when the servlet programmer
does not set the type.

It is recommended that containers use the X-Powered-By HTTP header to publish its
implementation information. The field value should consist of one or more
implementation types, such as "Servlet/3.0". Optionally, the supplementary
information of the container and the underlying Java platform can be added after the
implementation type within parentheses. The container should be configurable to
suppress this header.

Here’s the examples of this header.

X-Powered-By: Servlet/3.1

X-Powered-By: Servlet/3.1 JSP/2.2 (GlassFish v3 JRE/1.6.0)

5.3 Non Blocking IO
Non-blocking IO only works with async request processing in Servlets and Filters as
defined in 1Section 2.3.3.3, “Asynchronous processing” on page 2-10. To support
non-blocking writes in the Web container, in addition to the changes made in the
ServletRequest as described in Section 3.7, “Non Blocking IO” on page 3-28, the
following changes have been made to handle response related classes / interfaces.

The WriteListener provides the following callback methods which the container
invokes appropriately.
■ WriteListener

■ void onWritePossible(). When a WriteListener is registered with the
ServletOutputStream, this method will be invoked by the container the first
time when it is possible to write data. The container will subsequently invoke
the onWritePossible method if and only if isReady method on
ServletOutputStream, described below, returns false.

■ onError(Throwable t). Invoked when an error occurs processing the
response.

Along with the WriteListener, the following methods have been added to
ServletOutputStream class to allow the developer to check with the runtime
whether or not it is possible to write the data to be sent to the client.
Chapter 5 The Response 45

■ ServletOutputStream

■ boolean isReady(). This method returns true if a write to the
ServletOutputStream will succeed, otherwise it will return false. If this
method returns true, a write operation can be performed on the
ServletOutputStream. If no further data can be written to the
ServletOutputStream. then this method will return false till the underlying
data is flushed at which point the container will invoke the onWritePossible
method of the WriteListener. A subsequent call to this method will return
true.

■ void setWriteListener(WriteListener listener). Associates the
WriteListener with this ServletOutputStream. for the container to invoke the
callback methods on the WriteListener when it is possible to write data.
Registering a WriteListener will start non-blocking IO. It is illegal to switch to
the traditional blocking IO at that point.

5.4 Convenience Methods
The following convenience methods exist in the HttpServletResponse interface:

■ sendRedirect
■ sendError

The sendRedirect method will set the appropriate headers and content body to
redirect the client to a different URL. It is legal to call this method with a relative
URL path, however the underlying container must translate the relative path to a
fully qualified URL for transmission back to the client. If a partial URL is given and,
for whatever reason, cannot be converted into a valid URL, then this method must
throw an IllegalArgumentException.

The sendError method will set the appropriate headers and content body for an
error message to return to the client. An optional String argument can be provided
to the sendError method which can be used in the content body of the error.

These methods will have the side effect of committing the response, if it has not
already been committed, and terminating it. No further output to the client should
be made by the servlet after these methods are called. If data is written to the
response after these methods are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client (i.e. the
response is not committed), the data in the response buffer must be cleared and
replaced with the data set by these methods. If the response is committed, these
methods must throw an IllegalStateException.
46 Java Servlet Specification •

5.5 Internationalization
Servlets should set the locale and the character encoding of a response. The locale is
set using the ServletResponse.setLocale method. The method can be called
repeatedly; but calls made after the response is committed have no effect. If the
servlet does not set the locale before the page is committed, the container’s default
locale is used to determine the response’s locale, but no specification is made for the
communication with a client, such as Content-Language header in the case of HTTP.

If the element does not exist or does not provide a mapping, setLocale uses a
container dependent mapping. The setCharacterEncoding, setContentType, and
setLocale methods can be called repeatedly to change the character encoding. Calls
made after the servlet response’s getWriter method has been called or after the
response is committed have no effect on the character encoding. Calls to
setContentType set the character encoding only if the given content type string
provides a value for the charset attribute. Calls to setLocale set the character
encoding only if neither setCharacterEncoding nor setContentType has set the
character encoding before.

If the servlet does not specify a character encoding before the getWriter method of
the ServletResponse interface is called or the response is committed, the default
ISO-8859-1 is used.

Containers must communicate the locale and the character encoding used for the
servlet response’s writer to the client if the protocol in use provides a way for doing
so. In the case of HTTP, the locale is communicated via the Content-Language
header, the character encoding as part of the Content-Type header for text media
types. Note that the character encoding cannot be communicated via HTTP headers
if the servlet does not specify a content type; however, it is still used to encode text
written via the servlet response’s writer.

<locale-encoding-mapping-list>
<locale-encoding-mapping>

<locale>ja</locale>
<encoding>Shift_JIS</encoding>

</locale-encoding-mapping>
</locale-encoding-mapping-list>
Chapter 5 The Response 47

5.6 Closure of Response Object
When a response is closed, the container must immediately flush all remaining
content in the response buffer to the client. The following events indicate that the
servlet has satisfied the request and that the response object is to be closed:

■ The termination of the service method of the servlet.
■ The amount of content specified in the setContentLength or

setContentLengthLong method of the response has been greater than zero and
has been written to the response.

■ The sendError method is called.
■ The sendRedirect method is called.
■ The complete method on AsyncContext is called.

5.7 Lifetime of the Response Object
Each response object is valid only within the scope of a servlet’s service method, or
within the scope of a filter’s doFilter method, unless the associated request object
has asynchronous processing enabled for the component. If asynchronous processing
on the associated request is started, then the request object remains valid until
complete method on AsyncContext is called. Containers commonly recycle response
objects in order to avoid the performance overhead of response object creation. The
developer must be aware that maintaining references to response objects for which
startAsync on the corresponding request has not been called, outside the scope
described above may lead to non-deterministic behavior.
48 Java Servlet Specification •

CHAPTER 6

Filtering

Filters are Java components that allow on the fly transformations of payload and
header information in both the request into a resource and the response from a
resource

This chapter describes the Java Servlet v.3.0 API classes and methods that provide a
lightweight framework for filtering active and static content. It describes how filters
are configured in a Web application, and conventions and semantics for their
implementation.

API documentation for servlet filters is provided online. The configuration syntax
for filters is given by the deployment descriptor schema in Chapter 14, “Deployment
Descriptor”. The reader should use these sources as references when reading this
chapter.

6.1 What is a filter?
A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters do not generally create a response or
respond to a request as servlets do, rather they modify or adapt the requests for a
resource, and modify or adapt responses from a resource.

Filters can act on dynamic or static content. For the purposes of this chapter,
dynamic and static content are referred to as Web resources.

Among the types of functionality available to the developer needing to use filters are
the following:

■ The accessing of a resource before a request to it is invoked.
■ The processing of the request for a resource before it is invoked.
■ The modification of request headers and data by wrapping the request in

customized versions of the request object.
49

■ The modification of response headers and response data by providing customized
versions of the response object.

■ The interception of an invocation of a resource after its call.
■ Actions on a servlet, on groups of servlets, or static content by zero, one, or more

filters in a specifiable order.

6.1.1 Examples of Filtering Components
■ Authentication filters
■ Logging and auditing filters
■ Image conversion filters
■ Data compression filters
■ Encryption filters
■ Tokenizing filters
■ Filters that trigger resource access events
■ XSL/T filters that transform XML content
■ MIME-type chain filters
■ Caching filters

6.2 Main Concepts
The main concepts of this filtering model are described in this section.

The application developer creates a filter by implementing the
javax.servlet.Filter interface and providing a public constructor taking no
arguments. The class is packaged in the Web Archive along with the static content
and servlets that make up the Web application. A filter is declared using the
<filter> element in the deployment descriptor. A filter or collection of filters can be
configured for invocation by defining <filter-mapping> elements in the
deployment descriptor. This is done by mapping filters to a particular servlet by the
servlet’s logical name, or mapping to a group of servlets and static content resources
by mapping a filter to a URL pattern.

6.2.1 Filter Lifecycle
After deployment of the Web application, and before a request causes the container
to access a Web resource, the container must locate the list of filters that must be
applied to the Web resource as described below. The container must ensure that it
has instantiated a filter of the appropriate class for each filter in the list, and called
its init(FilterConfig config) method. The filter may throw an exception to
50 Java Servlet Specification •

indicate that it cannot function properly. If the exception is of type
UnavailableException, the container may examine the isPermanent attribute of
the exception and may choose to retry the filter at some later time.

Only one instance per <filter> declaration in the deployment descriptor is
instantiated per JVM of the container. The container provides the filter config as
declared in the filter’s deployment descriptor, the reference to the ServletContext
for the Web application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter instance in
the list and calls its doFilter method, passing in the ServletRequest and
ServletResponse, and a reference to the FilterChain object it will use.

The doFilter method of a filter will typically be implemented following this or
some subset of the following pattern:

1. The method examines the request’s headers.

2. The method may wrap the request object with a customized implementation of
ServletRequest or HttpServletRequest in order to modify request headers or data.

3. The method may wrap the response object passed in to its doFilter method with a
customized implementation of ServletResponse or HttpServletResponse to
modify response headers or data.

4. The filter may invoke the next entity in the filter chain. The next entity may be
another filter, or if the filter making the invocation is the last filter configured in the
deployment descriptor for this chain, the next entity is the target Web resource. The
invocation of the next entity is effected by calling the doFilter method on the
FilterChain object, and passing in the request and response with which it was
called or passing in wrapped versions it may have created.

The filter chain’s implementation of the doFilter method, provided by the
container, must locate the next entity in the filter chain and invoke its doFilter
method, passing in the appropriate request and response objects.

Alternatively, the filter chain can block the request by not making the call to invoke
the next entity, leaving the filter responsible for filling out the response object.

The service method is required to run in the same thread as all filters that apply to
the servlet.

5. After invocation of the next filter in the chain, the filter may examine response
headers.

6. Alternatively, the filter may have thrown an exception to indicate an error in
processing. If the filter throws an UnavailableException during its doFilter
processing, the container must not attempt continued processing down the filter
chain. It may choose to retry the whole chain at a later time if the exception is not
marked permanent.
Chapter 6 Filtering 51

7. When the last filter in the chain has been invoked, the next entity accessed is the
target servlet or resource at the end of the chain.

8. Before a filter instance can be removed from service by the container, the container
must first call the destroy method on the filter to enable the filter to release any
resources and perform other cleanup operations.

6.2.2 Wrapping Requests and Responses
Central to the notion of filtering is the concept of wrapping a request or response in
order that it can override behavior to perform a filtering task. In this model, the
developer not only has the ability to override existing methods on the request and
response objects, but to provide new API suited to a particular filtering task to a
filter or target web resource down the chain. For example, the developer may wish
to extend the response object with higher level output objects that the output stream
or the writer, such as API that allows DOM objects to be written back to the client.

In order to support this style of filter the container must support the following
requirement. When a filter invokes the doFilter method on the container’s filter
chain implementation, the container must ensure that the request and response
object that it passes to the next entity in the filter chain, or to the target web resource
if the filter was the last in the chain, is the same object that was passed into the
doFilter method by the calling filter.

The same requirement of wrapper object identity applies to the calls from a servlet
or a filter to RequestDispatcher.forward or RequestDispatcher.include, when
the caller wraps the request or response objects. In this case, the request and
response objects seen by the called servlet must be the same wrapper objects that
were passed in by the calling servlet or filter.

6.2.3 Filter Environment
A set of initialization parameters can be associated with a filter using the <init-
params> element in the deployment descriptor. The names and values of these
parameters are available to the filter at runtime via the getInitParameter and
getInitParameterNames methods on the filter’s FilterConfig object. Additionally,
the FilterConfig affords access to the ServletContext of the Web application for
the loading of resources, for logging functionality, and for storage of state in the
ServletContext’s attribute list. A Filter and the target servlet or resource at the end
of the filter chain must execute in the same invocation thread.
52 Java Servlet Specification •

6.2.4 Configuration of Filters in a Web Application
A filter is defined either via the @WebFilter annotation as defined in Section 8.1.2,
“@WebFilter” on page 8-67 of the specification or in the deployment descriptor using
the <filter> element. In this element, the programmer declares the following:

■ filter-name: used to map the filter to a servlet or URL
■ filter-class: used by the container to identify the filter type
■ init-params: initialization parameters for a filter

Optionally, the programmer can specify icons, a textual description, and a display
name for tool manipulation. The container must instantiate exactly one instance of
the Java class defining the filter per filter declaration in the deployment descriptor.
Hence, two instances of the same filter class will be instantiated by the container if
the developer makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

Once a filter has been declared in the deployment descriptor, the assembler uses the
<filter-mapping> element to define servlets and static resources in the Web
application to which the filter is to be applied. Filters can be associated with a servlet
using the <servlet-name> element. For example, the following code example maps
the Image Filter filter to the ImageServlet servlet:

Filters can be associated with groups of servlets and static content using the <url-
pattern> style of filter mapping:

Here the Logging Filter is applied to all the servlets and static content pages in the
Web application, because every request URI matches the ‘/*’ URL pattern.

<filter>
<filter-name>Image Filter</filter-name>
<filter-class>com.acme.ImageServlet</filter-class>

</filter>

<filter-mapping>
<filter-name>Image Filter</filter-name>
<servlet-name>ImageServlet</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>Logging Filter</filter-name>
 <url-pattern>/*</url-pattern>

</filter-mapping>
Chapter 6 Filtering 53

When processing a <filter-mapping> element using the <url-pattern> style, the
container must determine whether the <url-pattern> matches the request URI
using the path mapping rules defined in Chapter 12, “Mapping Requests to
Servlets”.

The order the container uses in building the chain of filters to be applied for a
particular request URI is as follows:

1. First, the <url-pattern> matching filter mappings in the same order that these
elements appear in the deployment descriptor.

2. Next, the <servlet-name> matching filter mappings in the same order that these
elements appear in the deployment descriptor.

If a filter mapping contains both <servlet-name> and <url-pattern>, the container
must expand the filter mapping into multiple filter mappings (one for each <servlet-
name> and <url-pattern>), preserving the order of the <servlet-name> and <url-
pattern> elements. For example, the following filter mapping:

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/foo/*</url-pattern>
<servlet-name>Servlet1</servlet-name>
<servlet-name>Servlet2</servlet-name>
<url-pattern>/bar/*</url-pattern>

</filter-mapping>
54 Java Servlet Specification •

is equivalent to:

The requirement about the order of the filter chain means that the container, when
receiving an incoming request, processes the request as follows:

■ Identifies the target Web resource according to the rules of “Specification of
Mappings” on page 120.

■ If there are filters matched by servlet name and the Web resource has a <servlet-
name>, the container builds the chain of filters matching in the order declared in
the deployment descriptor. The last filter in this chain corresponds to the last
<servlet-name> matching filter and is the filter that invokes the target Web
resource.

■ If there are filters using <url-pattern> matching and the <url-pattern> matches
the request URI according to the rules of Section 12.2, “Specification of
Mappings”, the container builds the chain of <url-pattern> matched filters in
the same order as declared in the deployment descriptor. The last filter in this
chain is the last <url-pattern> matching filter in the deployment descriptor for
this request URI. The last filter in this chain is the filter that invokes the first filter
in the <servlet-name> matching chain, or invokes the target Web resource if there
are none.

It is expected that high performance Web containers will cache filter chains so that
they do not need to compute them on a per-request basis.

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/foo/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<servlet-name>Servlet1</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<servlet-name>Servlet2</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/bar/*</url-pattern>

</filter-mapping>
Chapter 6 Filtering 55

6.2.5 Filters and the RequestDispatcher
New since version 2.4 of the Java Servlet specification is the ability to configure
filters to be invoked under request dispatcher forward() and include() calls.

By using the new <dispatcher> element in the deployment descriptor, the
developer can indicate for a filter-mapping whether he would like the filter to be
applied to requests when:

1. The request comes directly from the client.

This is indicated by a <dispatcher> element with value REQUEST, or by the
absence of any <dispatcher> elements.

2. The request is being processed under a request dispatcher representing the Web
component matching the <url-pattern> or <servlet-name> using a forward()
call.

This is indicated by a <dispatcher> element with value FORWARD.

3. The request is being processed under a request dispatcher representing the Web
component matching the <url-pattern> or <servlet-name> using an include()
call.

This is indicated by a <dispatcher> element with value INCLUDE.

4. The request is being processed with the error page mechanism specified in ”Error
Handling” on page 106 to an error resource matching the <url-pattern>.

This is indicated by a <dispatcher> element with the value ERROR.

5. The request is being processed with the async context dispatch mechanism
specified in ”Asynchronous processing” on page 10 to a web component using a
dispatch call.

This is indicated by a <dispatcher> element with the value ASYNC.

6. Or any combination of 1, 2, 3, 4 or 5 above.

For example:

<filter-mapping>
<filter-name>Logging Filter</filter-name>
<url-pattern>/products/*</url-pattern>

</filter-mapping>
56 Java Servlet Specification •

would result in the Logging Filter being invoked by client requests starting
/products/... but not underneath a request dispatcher call where the request
dispatcher has path commencing /products/.... The LoggingFilter would be
invoked both on the initial dispatch of the request and on resumed request. The
following code:

would result in the Logging Filter not being invoked by client requests to the
ProductServlet, nor underneath a request dispatcher forward() call to the
ProductServlet, but would be invoked underneath a request dispatcher include()
call where the request dispatcher has a name commencing ProductServlet. The
following code:

would result in the Logging Filter being invoked by client requests starting
/products/... and underneath a request dispatcher forward() call where the
request dispatcher has path commencing /products/....

Finally, the following code uses the special servlet name ‘*’:

This code would result in the All Dispatch Filter being invoked on request
dispatcher forward() calls for all request dispatchers obtained by name or by path.

<filter-mapping>
<filter-name>Logging Filter</filter-name>
<servlet-name>ProductServlet</servlet-name>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

<filter-mapping>
<filter-name>Logging Filter</filter-name>
<url-pattern>/products/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

<filter-mapping>
<filter-name>All Dispatch Filter</filter-name>
<servlet-name>*</servlet-name>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>
Chapter 6 Filtering 57

58 Java Servlet Specification •

CHAPTER 7

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build
effective Web applications, it is imperative that requests from a particular client be
associated with each other. Many strategies for session tracking have evolved over
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simple HttpSession interface that allows a servlet
container to use any of several approaches to track a user’s session without
involving the Application Developer in the nuances of any one approach.

7.1 Session Tracking Mechanisms
The following sections describe approaches to tracking a user’s sessions

7.1.1 Cookies
Session tracking through HTTP cookies is the most used session tracking mechanism
and is required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the cookie on
each subsequent request to the server, unambiguously associating the request with a
session. The standard name of the session tracking cookie must be JSESSIONID,
which must be supported by all 3.0 compliant containers. Containers may allow the
name of the session tracking cookie to be customized through container specific
configuration.

All servlet containers MUST provide an ability to configure whether or not the
container marks the session tracking cookie as HttpOnly. The established
configuration must apply to all contexts for which a context specific configuration
has not been established (see SessionCookieConfig javadoc for more details).
59

If a web application configures a custom name for its session tracking cookies, the
same custom name will also be used as the name of the URI parameter if the session
id is encoded in the URL (provided that URL rewriting has been enabled).

7.1.2 SSL Sessions
Secure Sockets Layer, the encryption technology used in the HTTPS protocol, has a
built-in mechanism allowing multiple requests from a client to be unambiguously
identified as being part of a session. A servlet container can easily use this data to
define a session.

7.1.3 URL Rewriting
URL rewriting is the lowest common denominator of session tracking. When a client
will not accept a cookie, URL rewriting may be used by the server as the basis for
session tracking. URL rewriting involves adding data, a session ID, to the URL path
that is interpreted by the container to associate the request with a session.

The session ID must be encoded as a path parameter in the URL string. The name of
the parameter must be jsessionid. Here is an example of a URL containing encoded
path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

URL rewriting exposes session identifiers in logs, bookmarks, referer headers, cached HTML,
and the URL bar. URL rewriting should not be used as a session tracking mechanism where
cookies or SSL sessions are supported and suitable.

7.1.4 Session Integrity
Web containers must be able to support the HTTP session while servicing HTTP
requests from clients that do not support the use of cookies. To fulfill this
requirement, Web containers commonly support the URL rewriting mechanism.

7.2 Creating a Session
A session is considered “new” when it is only a prospective session and has not been
established. Because HTTP is a request-response based protocol, an HTTP session is
considered to be new until a client “joins” it. A client joins a session when session
60 Java Servlet Specification •

tracking information has been returned to the server indicating that a session has
been established. Until the client joins a session, it cannot be assumed that the next
request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

■ The client does not yet know about the session
■ The client chooses not to join a session.

These conditions define the situation where the servlet container has no mechanism
by which to associate a request with a previous request.

A Servlet Developer must design his application to handle a situation where a client
has not, can not, or will not join a session.

Associated with each session, there is a string containing a unique identifier, which
is referred to as the session id. The value of the session id can be obtained by calling
javax.servlet.http.HttpSession.getId() and can be changed after creation
by invoking
javax.servlet.http.HttpServletRequest.changeSessionId().

7.3 Session Scope
HttpSession objects must be scoped at the application (or servlet context) level. The
underlying mechanism, such as the cookie used to establish the session, can be the
same for different contexts, but the object referenced, including the attributes in that
object, must never be shared between contexts by the container.

To illustrate this requirement with an example: if a servlet uses the
RequestDispatcher to call a servlet in another Web application, any sessions
created for and visible to the servlet being called must be different from those visible
to the calling servlet.

Additionally, sessions of a context must be resumable by requests into that context
regardless of whether their associated context was being accessed directly or as the
target of a request dispatch at the time the sessions were created.
Chapter 7 Sessions 61

7.4 Binding Attributes into a Session
A servlet can bind an object attribute into an HttpSession implementation by name.
Any object bound into a session is available to any other servlet that belongs to the
same ServletContext and handles a request identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed from, a
session. This information can be obtained by having the object implement the
HttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a
session.

■ valueBound
■ valueUnbound

The valueBound method must be called before the object is made available via the
getAttribute method of the HttpSession interface. The valueUnbound method
must be called after the object is no longer available via the getAttribute method of
the HttpSession interface.

7.5 Session Timeouts
In the HTTP protocol, there is no explicit termination signal when a client is no
longer active. This means that the only mechanism that can be used to indicate when
a client is no longer active is a time out period.

The default time out period for sessions is defined by the servlet container and can
be obtained via the getMaxInactiveInterval method of the HttpSession interface.
This time out can be changed by the Developer using the setMaxInactiveInterval
method of the HttpSession interface. The time out periods used by these methods
are defined in seconds. By definition, if the time out period for a session is set to 0 or
lesser value, the session will never expire. The session invalidation will not take
effect until all servlets using that session have exited the service method. Once the
session invalidation is initiated, a new request must not be able to see that session.
62 Java Servlet Specification •

7.6 Last Accessed Times
The getLastAccessedTime method of the HttpSession interface allows a servlet to
determine the last time the session was accessed before the current request. The
session is considered to be accessed when a request that is part of the session is first
handled by the servlet container.

7.7 Important Session Semantics

7.7.1 Threading Issues
Multiple servlets executing request threads may have active access to the same
session object at the same time. The container must ensure that manipulation of
internal data structures representing the session attributes is performed in a thread
safe manner. The Developer has the responsibility for thread safe access to the
attribute objects themselves. This will protect the attribute collection inside the
HttpSession object from concurrent access, eliminating the opportunity for an
application to cause that collection to become corrupted.

7.7.2 Distributed Environments
Within an application marked as distributable, all requests that are part of a session
must be handled by one JVM at a time. The container must be able to handle all
objects placed into instances of the HttpSession class using the setAttribute or
putValue methods appropriately. The following restrictions are imposed to meet
these conditions:

■ The container must accept objects that implement the Serializable interface.
■ The container may choose to support storage of other designated objects in the

HttpSession, such as references to Enterprise JavaBeans components and
transactions.

■ Migration of sessions will be handled by container-specific facilities.

The distributed servlet container must throw an IllegalArgumentException for
objects where the container cannot support the mechanism necessary for migration
of the session storing them.
Chapter 7 Sessions 63

The distributed servlet container must support the mechanism necessary for
migrating objects that implement Serializable.

These restrictions mean that the Developer is ensured that there are no additional
concurrency issues beyond those encountered in a non-distributed container.

The Container Provider can ensure scalability and quality of service features like
load-balancing and failover by having the ability to move a session object, and its
contents, from any active node of the distributed system to a different node of the
system.

If distributed containers persist or migrate sessions to provide quality of service
features, they are not restricted to using the native JVM Serialization mechanism for
serializing HttpSessions and their attributes. Developers are not guaranteed that
containers will call readObject and writeObject methods on session attributes if
they implement them, but are guaranteed that the Serializable closure of their
attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation after
deserialization of a session.

Application Developers writing distributed applications should be aware that since
the container may run in more than one Java virtual machine, the developer cannot
depend on static variables for storing an application state. They should store such
states using an enterprise bean or a database.

7.7.3 Client Semantics
Due to the fact that cookies or SSL certificates are typically controlled by the Web
browser process and are not associated with any particular window of the browser,
requests from all windows of a client application to a servlet container might be part
of the same session. For maximum portability, the Developer should always assume
that all windows of a client are participating in the same session.
64 Java Servlet Specification •

CHAPTER 8

Annotations and pluggability

This chapter talks about the annotations defined in Servlet 3.0 specification and the
enhancements to enable pluggability of frameworks and libraries for use within a
web application.

8.1 Annotations and pluggability
In a web application, classes using annotations will have their annotations processed
only if they are located in the WEB-INF/classes directory, or if they are packaged
in a jar file located in WEB-INF/lib within the application.

The web application deployment descriptor contains a new “metadata-complete”
attribute on the web-app element. The “metadata-complete” attribute defines
whether the web descriptor is complete, or whether the class files of the jar file
should be examined for annotations and web fragments at deployment time. If
“metadata-complete” is set to "true", the deployment tool MUST ignore any
servlet annotations that specify deployment information present in the class files of
the application and web fragments. If the metadata-complete attribute is not
specified or is set to "false", the deployment tool must examine the class files of the
application for annotations, and scan for web fragments.

Following are the annotations that MUST be supported by a Servlet 3.0 compliant
web container.

8.1.1 @WebServlet
This annotation is used to define a Servlet component in a web application. This
annotation is specified on a class and contains metadata about the Servlet being
declared. The urlPatterns or the value attribute on the annotation MUST be
65

present. All other attributes are optional with default settings (see javadocs for more
details). It is recommended to use value when the only attribute on the annotation
is the url pattern and to use the urlPatterns attribute when the other attributes
are also used. It is illegal to have both value and urlPatterns attribute used
together on the same annotation. The default name of the Servlet if not specified is
the fully qualified class name. The annotated servlet MUST specify at least one url
pattern to be deployed. If the same servlet class is declared in the deployment
descriptor under a different name, a new instance of the servlet MUST be
instantiated. If the same servlet class is added with a different name to the
ServletContext via the programmatic API defined in Section 4.4.1,
“Programmatically adding and configuring Servlets” on page 4-35, the attribute
values declared via the @WebServlet annotation MUST be ignored and a new
instance of the servlet with the name specified MUST be created.

Classes annotated with @WebServlet class MUST extend the
javax.servlet.http.HttpServlet class.

Following is an example of how this annotation would be used.

CODE EXAMPLE 8-1 @WebServlet Annotation Example

@WebServlet(”/foo”)

public class CalculatorServlet extends HttpServlet{

//...

}

Following is an example of how this annotation would be used with some more of
the attributes specified.

CODE EXAMPLE 8-2 @WebServlet annotation example using other annotation attributes
specified

@WebServlet(name=”MyServlet”, urlPatterns={"/foo", "/bar"})

public class SampleUsingAnnotationAttributes extends HttpServlet{

public void doGet(HttpServletRequest req, HttpServletResponse
res) {

 }

}

66 Java Servlet Specification •

8.1.2 @WebFilter
This annotation is used to define a Filter in a web application. This annotation is
specified on a class and contains metadata about the filter being declared. The
default name of the Filter if not specified is the fully qualified class name. The
urlPatterns attribute, servletNames attribute or the value attribute of the
annotation MUST be specified. All other attributes are optional with default settings
(see javadocs for more details). It is recommended to use value when the only
attribute on the annotation is the url pattern and to use the urlPatterns attribute
when the other attributes are also used. It is illegal to have both value and
urlPatterns attribute used together on the same annotation.

Classes annotated with @WebFilter MUST implement javax.servlet.Filter.

Following is an example of how this annotation would be used.

CODE EXAMPLE 8-3 @WebFilter annotation example

@WebFilter(“/foo”)

public class MyFilter implements Filter {

public void doFilter(HttpServletRequest req, HttpServletResponse
res)

{

...

}

}

8.1.3 @WebInitParam
This annotation is used to specify any init parameters that must be passed to the
Servlet or the Filter. It is an attribute of the WebServlet and WebFilter
annotation.

8.1.4 @WebListener
The WebListener annotation is used to annotate a listener to get events for various
operations on the particular web application context. Classes annotated with
@WebListener MUST implement one of the following interfaces:

■ javax.servlet.ServletContextListener
■ javax.servlet.ServletContextAttributeListener
■ javax.servlet.ServletRequestListener
■ javax.servlet.ServletRequestAttributeListener
Chapter 8 Annotations and pluggability 67

■ javax.servlet.http.HttpSessionListener
■ javax.servlet.http.HttpSessionAttributeListener
■ javax.servlet.http.HttpSessionIdListener

An example:

@WebListener

public class MyListener implements ServletContextListener{

 public void contextInitialized(ServletContextEvent sce) {

 ServletContext sc = sce.getServletContext();

 sc.addServlet("myServlet", "Sample servlet",
"foo.bar.MyServlet", null, -1);

 sc.addServletMapping("myServlet", new String[] {
"/urlpattern/*" });

 }

}

8.1.5 @MultipartConfig
This annotation, when specified on a Servlet, indicates that the request it expects
is of type mime/multipart. The HttpServletRequest object of the
corresponding servlet MUST make available the mime attachments via the
getParts and getPart methods to iterate over the various mime attachments. The
location attribute of the javax.servlet.annotation.MultipartConfig and
the <location> element of the <multipart-config> is interpreted as an absolute
path and defaults to the value of the javax.servlet.context.tempdir. If a
relative path is specified, it will be relative to the tempdir location. The test for
absolute path vs relative path MUST be done via java.io.File.isAbsolute.

8.1.6 Other annotations / conventions
In addition to these annotations all the annotations defined in Section 15.5,
“Annotations and Resource Injection” on page 15-183 will continue to work in the
context of these new annotations.

By default all applications will have index.htm(l) and index.jsp in the list of
welcome-file-list. The descriptor may to be used to override these default
settings.
68 Java Servlet Specification •

The order in which the Listeners, Servlets are loaded from the various framework
jars / classes in the WEB-INF/classes or WEB-INF/lib is unspecified when using
annotations. If ordering is important then look at the section for modularity of
web.xml and ordering of web.xml and web-fragment.xml below. The order can
be specified in the deployment descriptor only.

8.2 Pluggability

8.2.1 Modularity of web.xml
Using the annotations defined above makes the use of web.xml optional. However
for overriding either the default values or the values set via annotations, the
deployment descriptor is used. As before, if the metadata-complete element is set
to true in the web.xml descriptor, annotations that specify deployment information
present in the class files and web-fragments bundled in jars will not be processed. It
implies that all the metadata for the application is specified via the web.xml
descriptor.

For better pluggability and less configuration for developers, in this version (Servlet
3.0) of the specification we are introducing the notion of web module deployment
descriptor fragments (web fragment). A web fragment is a part or all of the web.xml
that can be specified and included in a library or framework jar's META-INF
directory. A plain old jar file in the WEB-INF/lib directory with no web-
fragment.xml is also considered a fragment. Any annotations specified in it will be
processed according to the rules defined in 8.2.3. The container will pick up and use
the configuration as per the rules defined below.

A web fragment is a logical partitioning of the web application in such a way that
the frameworks being used within the web application can define all the artifacts
without asking developers to edit or add information in the web.xml. It can include
almost all the same elements that the web.xml descriptor uses. However the top
level element for the descriptor MUST be web-fragment and the corresponding
descriptor file MUST be called web-fragment.xml. The ordering related elements
also differ between the web-fragment.xml and web.xml See the corresponding
schema for web-fragments in the deployment descriptor section in Chapter 14.

If a framework is packaged as a jar file and has metadata information in the form of
deployment descriptor then the web-fragment.xml descriptor must be in the
META-INF/ directory of the jar file.
Chapter 8 Annotations and pluggability 69

If a framework wants its META-INF/web-fragment.xml honored in such a way
that it augments a web application's web.xml, the framework must be bundled
within the web application's WEB-INF/lib directory. In order for any other types of
resources (e.g., class files) of the framework to be made available to a web
application, it is sufficient for the framework to be present anywhere in the
classloader delegation chain of the web application. In other words, only JAR files
bundled in a web application's WEB-INF/lib directory, but not those higher up in
the class loading delegation chain, need to be scanned for web-fragment.xml

During deployment the container is responsible for scanning the location specified
above and discovering the web-fragment.xml and processing them. The
requirements about name uniqueness that exist currently for a single web.xml also
apply to the union of a web.xml and all applicable web-fragment.xml files.

An example of what a library or framework can include is shown below

<web-fragment>

 <servlet>

 <servlet-name>welcome</servlet-name>

 <servlet-class>

 WelcomeServlet

 </servlet-class>

 </servlet>

 <listener>

 <listener-class>

 RequestListener

 </listener-class>

 </listener>

</web-fragment>

The above web-fragment.xml would be included in the META-INF/ directory of the
framework’s jar file. The order in which configuration from web-fragment.xml and
annotations should be applied is undefined. If ordering is an important aspect for a
particular application please see rules defined below on how to achieve the order
desired.
70 Java Servlet Specification •

8.2.2 Ordering of web.xml and web-fragment.xml
Since the specification allows the application configuration resources to be
composed of multiple configuration files (web.xml and web-fragment.xml),
discovered and loaded from several different places in the application, the question
of ordering must be addressed. This section specifies how configuration resource
authors may declare the ordering requirements of their artifacts.

A web-fragment.xml may have a top level <name> element of type
javaee:java-identifierType. There can only be one <name> element in a web-
fragment.xml. If a <name> element is present, it must be considered for the
ordering of artifacts (unless the duplicate name exception applies, as described
below).

Two cases must be considered to allow application configuration resources to
express their ordering preferences.

1. Absolute ordering: an <absolute-ordering> element in the web.xml. There
can only be one <absolute-ordering> element in a web.xml.

a. In this case, ordering preferences that would have been handled by case 2
below must be ignored.

b. The web.xml and WEB-INF/classes MUST be processed before any of the
web-fragments listed in the absolute-ordering element.

c. Any <name> element direct children of the <absolute-ordering> MUST be
interpreted as indicating the absolute ordering in which those named web-
fragments, which may or may not be present, must be processed.

d. The <absolute-ordering> element may contain zero or one <others />
element. The required action for this element is described below. If the
<absolute-ordering> element does not contain an <others/> element,
any web-fragment not specifically mentioned within <name /> elements
MUST be ignored. Excluded jars are not scanned for annotated servlets, filters
or listeners. However, if a servlet, filter or listener from an excluded jar is listed
in web.xml or a non-excluded web-fragment.xml, then it's annotations will
apply unless otherwise excluded by metadata-complete.
ServletContextListeners discovered in TLD files of excluded jars are not
able to configure filters and servlets using the programmatic APIs. Any
attempt to do so will result in an IllegalStateException. If a discovered
ServletContainerInitializer is loaded from an excluded jar, it will be
ignored. Irrespective of the setting of metadata-complete, jars excluded by
<absolute-ordering> elements are not scanned for classes to be handled by
any ServletContainerInitializer.

e. Duplicate name exception: if, when traversing the children of <absolute-
ordering>, multiple children with the same <name> element are encountered,
only the first such occurrence must be considered.
Chapter 8 Annotations and pluggability 71

2. Relative ordering: an <ordering> element within the web-fragment.xml.
There can only be one <ordering> element in a web-fragment.xml.

a. A web-fragment.xml may have an <ordering> element. If so, this element
must contain zero or one <before> element and zero or one <after>
element. The meaning of these elements is explained below.

b. The web.xml and WEB-INF/classes MUST be processed before any of the
web-fragments listed in the ordering element.

c. Duplicate name exception: if, when traversing the web-fragments, multiple
members with the same <name> element are encountered, the application must
log an informative error message including information to help fix the
problem, and must fail to deploy. For example, one way to fix this problem is
for the user to use absolute ordering, in which case relative ordering is ignored.

d. Consider this abbreviated but illustrative example. 3 web-fragments -
MyFragment1, MyFragment2 and MyFragment3 are part of the application
that also includes a web.xml.

web-fragment.xml

<web-fragment>

 <name>MyFragment1</name>

 <ordering><after><name>MyFragment2</name></after></ordering>

 ...

</web-fragment>

web-fragment.xml

<web-fragment>

 <name>MyFragment2</name>

 ..

</web-fragment>

web-fragment.xml

<web-fragment>

 <name>MyFragment3</name>

 <ordering><before><others/></before></ordering>

 ..

</web-fragment>

web.xml
72 Java Servlet Specification •

<web-app>

 ...

</web-app>

In this example the processing order will be

web.xml

MyFragment3

MyFragment2

MyFragment1

The preceding example illustrates some, but not all, of the following principles.

■ <before> means the document must be ordered before the document with the
name matching what is specified within the nested <name> element.

■ <after> means the document must be ordered after the document with the name
matching what is specified within the nested <name> element.

■ There is a special element <others/> which may be included zero or one time
within the <before> or <after> element, or zero or one time directly within the
<absolute-ordering> element. The <others/> element must be handled as
follows.

■ If the <before> element contains a nested <others/>, the document will be
moved to the beginning of the list of sorted documents. If there are multiple
documents stating <before><others/>, they will all be at the beginning of
the list of sorted documents, but the ordering within the group of such
documents is unspecified.

■ If the <after> element contains a nested <others/>, the document will be
moved to the end of the list of sorted documents. If there are multiple
documents requiring <after><others/>, they will all be at the end of the list
of sorted documents, but the ordering within the group of such documents is
unspecified.

■ Within a <before> or <after> element, if an <others/> element is present,
but is not the only <name> element within its parent element, the other
elements within that parent must be considered in the ordering process.

■ If the <others/> element appears directly within the <absolute-
ordering> element, the runtime must ensure that any web-fragments not
explicitly named in the <absolute-ordering> section are included at that
point in the processing order.

■ If a web-fragment.xml file does not have an <ordering> or the web.xml does
not have an <absolute-ordering> element the artifacts are assumed to not
have any ordering dependency.
Chapter 8 Annotations and pluggability 73

■ If the runtime discovers circular references, an informative message must be
logged, and the application must fail to deploy. Again, one course of action the
user may take is to use absolute ordering in the web.xml.

■ The previous example can be extended to illustrate the case when the web.xml
contains an ordering section.

web.xml

<web-app>

<absolute-ordering>

 <name>MyFragment3</name>

 <name>MyFragment2</name>

 </absolute-ordering>

 ...

</web-app>

In this example, the ordering for the various elements will be

web.xml

MyFragment3

MyFragment2

Some additional example scenarios are included below. All of these apply to relative
ordering and not absolute ordering

Document A:

<after>

<others/>

<name>

C

</name>

</after>

Document B

<before>

<others/>

</before>

Document C:

<after>
74 Java Servlet Specification •

<others/>

</after>

Document D: no ordering

Document E: no ordering

Document F:

<before>

<others/>

<name>

B

</name>

</before>

Resulting parse order:

web.xml, F, B, D, E, C, A.

Document <no id>:

<after>

<others/>

</after>
<before>

<name>

C

</name>

</before>

Document B:

<before>

<others/>

</before>

Document C: no ordering

Document D:

<after>

<others/>

</after>

Document E:
Chapter 8 Annotations and pluggability 75

<before>

<others/>

</before>

Document F: no ordering

Resulting parse order can be one of the following:

■ B, E, F, <no id>, C, D

■ B, E, F, <no id>, D, C

■ E, B, F, <no id>, C, D

■ E, B, F, <no id>, D, C

■ E, B, F, D, <no id>, C

■ E, B, F, D, <no id>, D

Document A:

<after>

<name>

B

</name>

</after>

Document B: no ordering

Document C:

<before>

<others/>

</before>

Document D: no ordering

Resulting parse order: C, B, D, A. The parse order could also be: C, D, B, A or C, B,
A, D

8.2.3 Assembling the descriptor from web.xml, web-
fragment.xml and annotations
If the order in which the listeners, servlets, filters are invoked is important to an
application then a deployment descriptor must be used. Also, if necessary, the
ordering element defined above can be used. As described above, when using
76 Java Servlet Specification •

annotations to define the listeners, servlets and filters, the order in which they are
invoked is unspecified. Below are a set of rules that apply for assembling the final
deployment descriptor for the application:

1. The order for listeners, servlets, filters if relevant must be specified in either the
web-fragment.xml or the web.xml.

2. The ordering will be based on the order in which they are defined in the
descriptor and on the absolute-ordering element in the web.xml or an
ordering element in the web-fragment.xml, if present.

a. Filters that match a request are chained in the order in which they are declared
in the web.xml.

b. Servlets are initialized either lazily at request processing time or eagerly during
deployment. In the latter case, they are initialized in the order indicated by
their load-on-startup elements.

c. The listeners are invoked in the order in which they are declared in the
web.xml as specified below:

i. Implementations of javax.servlet.ServletContextListener are
invoked at their contextInitialized method in the order in which they
have been declared, and at their contextDestroyed method in reverse
order.

ii. Implementations of javax.servlet.ServletRequestListener are
invoked at their requestInitialized method in the order in which they
have been declared, and at their requestDestroyed method in reverse
order.

iii. Implementations of javax.servlet.http.HttpSessionListener are
invoked at their sessionCreated method in the order in which they have
been declared, and at their sessionDestroyed method in reverse order.

iv. The methods of implementation of
javax.servlet.ServletContextAttributeListener,
javax.servlet.ServletRequestAttributeListener and
javax.servlet.HttpSessionAttributeListener are invoked in the
order in which they are declared when corresponding events are fired.

3. If a servlet is disabled using the enabled element introduced in the web.xml
then the servlet will not be available at the url-pattern specified for the servlet.

4. The web.xml of the web application has the highest precedence when resolving
conflicts between the web.xml, web-fragment.xml and annotations.
Chapter 8 Annotations and pluggability 77

5. If metadata-complete is not specified in the descriptors, or is set to false in
the deployment descriptor, then the effective metadata for the application is
derived by combining the metadata present in the annotations and the
descriptors. The rules for merging are specified below -

a. Configuration settings in web fragments are used to augment those specified in
the main web.xml in such a way as if they had been specified in the same
web.xml.

b. The order in which configuration settings of web fragments are added to those
in the main web.xml is as specified above in Section 8.2.2, “Ordering of
web.xml and web-fragment.xml” on page 8-71

c. The metadata-complete attribute when set to true in the main web.xml, is
considered complete and scanning of annotations and fragments will not occur
at deployment time. The absolute-ordering and ordering elements will
be ignored if present. When set to true on a fragment, the metadata-
complete attribute applies only to scanning of annotations in that particular
jar.

d. Web fragments are merged into the main web.xml unless the metadata-
complete is set to true. The merging takes place after annotation processing
on the corresponding fragment.

e. The following are considered configuration conflicts when augmenting a
web.xml with web fragments:

i. Multiple <init-param> elements with the same <param-name> but
different <param-value>

ii. Multiple <mime-mapping> elements with the same <extension> but
different <mime-type>

f. The above configuration conflicts are resolved as follows:

i. Configuration conflicts between the main web.xml and a web fragment are
resolved such that the configuration in the web.xml takes precedence.

ii. Configuration conflicts between two web fragments, where the element at
the center of the conflict is not present in the main web.xml, will result in
an error. An informative message must be logged, and the application must
fail to deploy.

g. After the above conflicts have been resolved, these additional rules are applied

i. Elements that may be declared any number of times are additive across the
web-fragments in the resulting web.xml. For example, <context-
param> elements with different <param-name> are additive.
78 Java Servlet Specification •

ii. Elements that may be declared any number of times, if specified in the
web.xml overrides the values specified in the web-fragments with the
same name.

iii. If an element with a minimum occurrence of zero, and a maximum
occurrence of one, is present in a web fragment, and missing in the main
web.xml, the main web.xml inherits the setting from the web fragment. If
the element is present in both the main web.xml and the web fragment, the
configuration setting in the main web.xml takes precedence. For example, if
both the main web.xml and a web fragment declare the same servlet, and
the servlet declaration in the web fragment specifies a <load-on-
startup> element, whereas the one in the main web.xml does not, then
the <load-on-startup> element from the web fragment will be used in
the merged web.xml.

iv. It is considered an error if an element with a minimum occurrence of zero,
and a maximum occurrence of one, is specified differently in two web
fragments, while absent from the main web.xml. For example, if two web
fragments declare the same servlet, but with different <load-on-startup>
elements, and the same servlet is also declared in the main web.xml, but
without any <load-on-startup>, then an error must be reported.

v. <welcome-file> declarations are additive.

vi. <servlet-mapping> elements with the same <servlet-name> are
additive across web-fragments. <servlet-mapping> specified in the
web.xml overrides values specified in the web-fragments with the same
<servlet-name>.

vii. <filter-mapping> elements with the same <filter-name> are additive
across web-fragments. <filter-mapping> specified in the web.xml
overrides values specified in the web-fragments with the same <filter-
name>.

viii. Multiple <listener> elements with the same <listener-class> are
treated as a single <listener> declaration

ix. The web.xml resulting from the merge is considered <distributable>
only if all its web fragments are marked as <distributable> as well.

x. The top-level <icon> and it’s children elements, <display-name>, and
<description> elements of a web fragment are ignored.

xi. jsp-property-group is additive. It is recommended that jsp-config
element use the url-pattern as opposed to extension mappings when
bundling static resources in the META-INF/resources directory of a jar
file. Further more JSP resources for a fragment should be in a sub-directory
same as the fragment name, if there exists one. This helps prevent a web-
Chapter 8 Annotations and pluggability 79

fragment’s jsp-property-group from affecting the JSPs in the main
docroot of the application and the jsp-property-group from affecting
the JSPs in a fragment’s META-INF/resources directory.

h. For all the resource reference elements (env-entry, ejb-ref, ejb-
local-ref, service-ref, resource-ref, resource-env-ref,
message-destination-ref, persistence-context-ref and
persistence-unit-ref) the following rules apply:

i. If any resource reference element is present in a web fragment, and is
missing in the main web.xml, the main web.xml inherits the value from the
web fragment. If the element is present in both the main web.xml and the
web fragment, with the same name, the web.xml takes precedence. None of
the child elements from the fragment are merged into the main web.xml
except for the injection-target as specified below. For example, if both
the main web.xml and a web fragment declare a <resource-ref> with
the same <resource-ref-name>, the <resource-ref> from the
web.xml will be used without any child elements being merged from the
fragment except <injection-target> as described below.

ii. If a resource reference element is specified in two fragments, while absent
from the main web.xml, and all the attributes and child elements of the
resource reference element are identical, the resource reference will be
merged into the main web.xml. It is considered an error if a resource
reference element has the same name specified in two fragments, while
absent from the main web.xml and the attributes and child elements are not
identical in the two fragments. An error must be reported and the
application MUST fail to deploy. For example, if two web fragments declare
a <resource-ref> with the same <resource-ref-name> element but
the type in one is specified as javax.sql.DataSource while the type in
the other is that of a JavaMail resource, it is an error and the application will
fail to deploy

iii. For resource reference element with the same name <injection-target>
elements from the fragments will be merged into the main web.xml.

i. In addition to the merging rules for web-fragment.xml defined above, the
following rules apply when using the resource reference annotations
(@Resource, @Resources, @EJB, @EJBs, @WebServiceRef,
@WebServiceRefs, @PersistenceContext,
@PersistenceContexts,@PersistenceUnit, and
@PersistenceUnits)

If a resource reference annotation is applied on a class, it is equivalent to
defining a resource, however it is not equivalent to defining an injection-
target. The rules above apply for injection-target element in this case.
80 Java Servlet Specification •

If a resource reference annotation is used on a field it is equivalent to defining
the injection-target element in the web.xml. However if there is no
injection-target element in the descriptor then the injection-target
from the fragments will still be merged into the web.xml as defined above.

If on the other hand there is an injection-target in the main web.xml and
there is a resource reference annotation with the same resource name, then it
is considered an override for the resource reference annotation. In this case
since there is an injection-target specified in the descriptor, the rules
defined above would apply in addition to overriding the value for the resource
reference annotation.

j. If a data-source element is specified in two fragments, while absent from the
main web.xml, and all the attributes and child elements of the data-source
element are identical, the data-source will be merged into the main
web.xml. It is considered an error if a data-source element has the same
name specified in two fragments, while absent from the main web.xml and
the attributes and child elements are not identical in the two fragments. In such
a case an error must be reported and the application MUST fail to deploy.

Below are some examples that show the outcome in the different cases.

CODE EXAMPLE 8-4

web.xml - no resource-ref definition

Fragment 1

web-fragment.xml

<resource-ref>

 <resource-ref-name="foo">

 ...

 <injection-target>

 <injection-target-class>

 com.foo.Bar.class

 </injection-target-class>

 <injection-target-name>

 baz

 </injection-target-name>

 </injection-target>

</resource-ref>

The effective metadata would be

<resource-ref>
Chapter 8 Annotations and pluggability 81

 <resource-ref-name="foo">

 <injection-target>

 <injection-target-class>

 com.foo.Bar.class

 </injection-target-class>

 <injection-target-name>

 baz

 </injection-target-name>

 </injection-target>

</resource-ref>

CODE EXAMPLE 8-5

web.xml

<resource-ref>

 <resource-ref-name="foo">

 ...

</resource-ref>

Fragment 1

web-fragment.xml

<resource-ref>

 <resource-ref-name="foo">

 ...

 <injection-target>

 <injection-target-class>

 com.foo.Bar.class

 </injection-target-class>

 <injection-target-name>

 baz

 </injection-target-name>

 </injection-target>

</resource-ref>

Fragment 2

web-fragment.xml
82 Java Servlet Specification •

<resource-ref>

 <resource-ref-name="foo">

 ...

 <injection-target>

 <injection-target-class>

 com.foo.Bar2.class

 </injection-target-class>

 <injection-target-name>

 baz2

 </injection-target-name>

 </injection-target>

</resource-ref>

The effective metadata would be

<resource-ref>

 <resource-ref-name="foo">

<injection-target>

 <injection-target-class>

 com.foo.Bar.class

 </injection-target-class>

 <injection-target-name>

 baz

 </injection-target-name>

 </injection-target>

 <injection-target>

 <injection-target-class>

 com.foo.Bar2.class

 </injection-target-class>

 <injection-target-name>

 baz2

 </injection-target-name>

 </injection-target>

</resource-ref>
Chapter 8 Annotations and pluggability 83

CODE EXAMPLE 8-6

web.xml

<resource-ref>

 <resource-ref-name="foo">

 <injection-target>

 <injection-target-class>

 com.foo.Bar3.class

 </injection-target-class>

 <injection-target-name>

 baz3

 </injection-target-name>

 ...

</resource-ref>

Fragment 1

web-fragment.xml<resource-ref>

 <resource-ref-name="foo">

 ...

 <injection-target>

 <injection-target-class>

 com.foo.Bar.class

 </injection-target-class>

 <injection-target-name>

 baz

 </injection-target-name>

 </injection-target>

</resource-ref>

Fragment 2

web-fragment.xml<resource-ref>

 <resource-ref-name="foo">

 ...

 <injection-target>

 <injection-target-class>
84 Java Servlet Specification •

 com.foo.Bar2.class

 </injection-target-class>

 <injection-target-name>

 baz2

 </injection-target-name>

 </injection-target>

</resource-ref>

The effective metadata would be

<resource-ref>

 <resource-ref-name="foo">

 <injection-target>

 <injection-target-class>

 com.foo.Bar3.class

 </injection-target-class>

 <injection-target-name>

 baz3

 </injection-target-name>

<injection-target-class>

com.foo.Bar.class

</injection-target-class>

<injection-target-name>

baz

</injection-target-name>

<injection-target-class>

com.foo.Bar2.class

</injection-target-class>

<injection-target-name>

baz2

</injection-target-name>

</injection-target>

 ...

</resource-ref>
Chapter 8 Annotations and pluggability 85

The <injection-target> from fragment 1 and 2 will be merged into the main
web.xml

k. If the main web.xml does not have any <post-construct> element specified
and web-fragments have specified <post-construct> then the <post-
construct> elements from the fragments will be merged into the main
web.xml. However if in the main web.xml at least one <post-construct>
element is specified then the <post-construct> elements from the fragment
will not be merged. It is the responsibility of the author of the web.xml to
make sure that the <post-construct> list is complete.

l. If the main web.xml does not have any <pre-destroy> element specified
and web-fragments have specified <pre-destroy> then the <pre-destroy>
elements from the fragments will be merged into the main web.xml. However
if in the main web.xml at least one <pre-destroy> element is specified then
the <pre-destroy> elements from the fragment will not be merged. It is the
responsibility of the author of the web.xml to make sure that the <pre-
destroy> list is complete.

m. After processing the web-fragment.xml, annotations from the
corresponding fragment are processed to complete the effective metadata for
the fragment before processing the next fragment. The following rules are used
for processing annotations:

n. Any metadata specified via an annotation that isn’t already present in the
descriptor will be used to augment the effective descriptor.

i. Configuration specified in the main web.xml or a web fragment takes
precedence over the configuration specified via annotations.

ii. For a servlet defined via the @WebServlet annotation, to override values
via the descriptor, the name of the servlet in the descriptor MUST match the
name of the servlet specified via the annotation (explicitly specified or the
default name, if one is not specified via the annotation).

iii. Init params for servlets and filters defined via annotations, will be
overridden in the descriptor if the name of the init param exactly matches
the name specified via the annotation. Init params are additive between the
annotations and descriptors.

iv. url-patterns, when specified in a descriptor for a given servlet name
overrides the url patterns specified via the annotation.

v. For a filter defined via the @WebFilter annotation, to override values via
the descriptor, the name of the filter in the descriptor MUST match the name
of the filter specified via the annotation (explicitly specified or the default
name, if one is not specified via the annotation).
86 Java Servlet Specification •

vi. url-patterns to which a filter is applied, when specified in a descriptor
for a given filter name overrides the url patterns specified via the
annotation.

vii. DispatcherTypes to which a filter applies, when specified in a descriptor for
a given filter name overrides the DispatcherTypes specified via the
annotation.

viii. The following examples demonstrates some of the above rules -

A Servlet declared via an annotation and packaged with the corresponding web.xml
in the descriptor

@WebServlet(urlPatterns=”/MyPattern”, initParams=
{@WebInitParam(name="ccc", value="333")})

public class com.acme.Foo extends HttpServlet

 {

 ...

 }

web.xml

<servlet>

 <servlet-class>com.acme.Foo</servlet-class>

 <servlet-name>Foo</servlet-name>

 <init-param>

 <param-name>aaa</param-name>

 <param-value>111</param-value>

 </init-param>

 </servlet>

 <servlet>

 <servlet-class>com.acme.Foo</servlet-class>

 <servlet-name>Fum</servlet-name>

 <init-param>

 <param-name>bbb</param-name>

 <param-value>222</param-value>

 </init-param>

 </servlet>
Chapter 8 Annotations and pluggability 87

 <servlet-mapping>

 <servlet-name>Foo</servlet-name>

 <url-pattern>/foo/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>Fum</servlet-name>

 <url-pattern>/fum/*</url-pattern>

 </servlet-mapping>

Since the name of the servlet declared via the annotation does not match the name of
the servlet declared in the web.xml, the annotation specifies a new servlet
declaration in addition to the other declarations in web.xml and is equivalent to:

 <servlet>

 <servlet-class>com.acme.Foo</servlet-class>

 <servlet-name>com.acme.Foo</servlet-name>

 <init-param>

 <param-name>ccc</param-name>

 <param-value>333</param-name>

 </servlet>

If the above web.xml were replaced with the following

<servlet>

 <servlet-class>com.acme.Foo</servlet-class>

 <servlet-name>com.acme.Foo</servlet-name>

 <init-param>

 <param-name>aaa</param-name>

 <param-value>111</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>com.acme.Foo</servlet-name>

 <url-pattern>/foo/*</url-pattern>

 </servlet-mapping>

Then the effective descriptor would be equivalent to <servlet>

 <servlet-class>com.acme.Foo</servlet-class>
88 Java Servlet Specification •

 <servlet-name>com.acme.Foo</servlet-name>

 <init-param>

 <param-name>aaa</param-name>

 <param-value>111</param-value>

 </init-param>

<init-param>

 <param-name>ccc</param-name>

 <param-value>333</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>com.acme.Foo</servlet-name>

 <url-pattern>/foo/*</url-pattern>

 </servlet-mapping>

8.2.4 Shared libraries / runtimes pluggability
In addition to supporting fragments and use of annotations one of the requirements
is that not only we be able to plug-in things that are bundled in the WEB-INF/lib
but also plugin shared copies of frameworks - including being able to plug-in to the
web container things like JAX-WS, JAX-RS and JSF that build on top of the web
container. The ServletContainerInitializer allows handling such a use case
as described below.

The ServletContainerInitializer class is looked up via the jar services API.
For each application, an instance of the ServletContainerInitializer is
created by the container at application startup time. The framework providing an
implementation of the ServletContainerInitializer MUST bundle in the
META-INF/services directory of the jar file a file called
javax.servlet.ServletContainerInitializer, as per the jar services API,
that points to the implementation class of the ServletContainerInitializer.

In addition to the ServletContainerInitializer we also have an annotation -
HandlesTypes. The HandlesTypes annotation on the implementation of the
ServletContainerInitializer is used to express interest in classes that may
have anotations (type, method or field level annotations) specified in the value of the
HandlesTypes or if it extends / implements one those classes anywhere in the
class’ super types. The HandlesTypes annotation is applied irrespective of the
setting of metadata-complete. The container uses the HandlesTypes annotation
to determine when to invoke the initializer's onStartup method. When examining
Chapter 8 Annotations and pluggability 89

the classes of an application to see if they match any of the criteria specified by the
HandlesTypes annotation of a ServletContainerInitializer, the container
may run into class loading problems if one or more of the application's optional JAR
files are missing. Since the container is not in a position to decide whether these
types of class loading failures will prevent the application from working correctly, it
must ignore them, while at the same time providing a configuration option that
would log them.

If an implementation of ServletContainerInitializer does not have the
@HandlesTypes annotation, or if there are no matches to any of the HandlesType
specified, then it will get invoked once for every application with null as the value
of the Set. This will allow for the initializer to determine based on the resources
available in the application whether it needs to initialize a servlet / filter or not.

The onStartup method of the ServletContainerInitializer will be invoked
when the application is coming up before any of the listener's events are fired.

The ServletContainerInitializer’s onStartup method get's a Set of Classes
that either extend / implement the classes that the initializer expressed interest in or
if it is annotated with any of the classes specified via the @HandlesTypes
annotation.

A concrete example below showcases how this would work.

Let's take the JAX-WS web services runtime.

The implementation of JAX-WS runtime isn't typically bundled in each and every
war file. The implementation would bundle an implementation of the
ServletContainerInitializer (shown below) and the container would look
that up using the services API (the jar file will bundle in it's META-INF/services
directory a file called javax.servlet.ServletContainerInitializer that will
point to the JAXWSServletContainerInitializer shown below).

@HandlesTypes(WebService.class)

JAXWSServletContainerInitializer
implements ServletContainerInitializer

{

 public void onStartup(Set<Class<?>> c, ServletContext ctx)
throws ServletException {

// JAX-WS specific code here to initialize the runtime
// and setup the mapping etc.

ServletRegistration reg = ctx.addServlet("JAXWSServlet",
"com.sun.webservice.JAXWSServlet");

reg.addServletMapping("/foo");

 }
90 Java Servlet Specification •

The framework jar file can also be bundled in WEB-INF/lib directory of the war
file. If the ServletContainerInitializer is bundled in a JAR file inside the
WEB-INF/lib directory of an application, it’s onStartup method will be invoked
only once during the startup of the bundling application. If, on the other hand, the
ServletContainerInitializer is bundled in a JAR file outside of the WEB-
INF/lib directory, but still discoverable by the runtime’s service provider lookup
mechanism, it’s onStartup method will be invoked every time an application is
started.

Implementations of the ServletContainerInitializer interface will be
discovered by the runtime's service lookup mechanism or a container specific
mechanism that is semantically equivalent to it. In either case,
ServletContainerInitializer services from web fragment JAR files that are
excluded from an absolute ordering MUST be ignored, and the order in which these
services are discovered MUST follow the application’s class loading delegation
model.

8.3 JSP container pluggability
The ServletContainerInitializer and programmatic registration features
make it possible to provide a clear separation of responsibilities between the Servlet
and JSP containers, by making the Servlet container responsible for parsing only
web.xml and web-fragment.xml resources, and delegating the parsing of Tag
Library Descriptor (TLD) resources to the JSP container.

Previously, a web container had to scan TLD resources for any listener declarations.
With Servlet 3.0, this responsibility may be delegated to the JSP container. A JSP
container that is embedded in a Servlet 3.0 compliant Servlet container may provide
its own ServletContainerInitializer implementation, search the
ServletContext passed to its onStartup method for any TLD resources, scan
those resources for listener declarations, and register the corresponding listeners
with the ServletContext.

In addition, prior to Servlet 3.0, a JSP container used to have to scan an application's
deployment descriptor for any jsp-config related configuration. With Servlet 3.0,
the Servlet container must make available, via the
ServletContext.getJspConfigDescriptor method, any jsp-config related
configuration from the application's web.xml and web-fragment.xml deployment
descriptors.

Any ServletContextListeners that were discovered in a TLD and registered
programmatically are limited in the functionality they provide. Any attempt to call a
ServletContext API method on them that was added in Servlet 3.0 will result in
an UnsupportedOperationException.
Chapter 8 Annotations and pluggability 91

In addition, a Servlet 3.0 compliant Servlet container must provide a
ServletContext attribute with name javax.servlet.context.orderedLibs,
whose value (of type java.util.List<java.lang.String>) contains the list of
names of JAR files in the WEB-INF/lib directory of the application represented by
the ServletContext, ordered by their web fragment names (with possible
exclusions if fragment JAR files have been excluded from absolute-ordering), or
null if the application does not specify any absolute or relative ordering.

8.4 Processing annotations and fragments
Web applications can include both annotations and the web.xml / web-
fragment.xml deployment descriptors. If there is no deployment descriptor, or
there is one but does not have the metadata-complete set to true, web.xml, web-
fragment.xml and annotations if used in the application must be processed. The
following table describes whether or not to process annotations and web.xml
fragments.

TABLE 8-1 Annotations and web fragment processing requirements

Deployment
descriptor

metadata-complete process annotations
and web fragments

web.xml 2.5 Yes No

web.xml 2.5 no yes

web.xml 3.0 yes no

web.xml 3.0 no yes
92 Java Servlet Specification •

CHAPTER 9

Dispatching Requests

When building a Web application, it is often useful to forward processing of a
request to another servlet, or to include the output of another servlet in the response.
The RequestDispatcher interface provides a mechanism to accomplish this.

When asynchronous processing is enabled on the request, the AsyncContext allows a
user to dispatch the request back to the servlet container.

9.1 Obtaining a RequestDispatcher
An object implementing the RequestDispatcher interface may be obtained from the
ServletContext via the following methods:

■ getRequestDispatcher
■ getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a path
within the scope of the ServletContext. This path must be relative to the root of the
ServletContext and begin with a ‘/’, or be empty. The method uses the path to
look up a servlet, using the servlet path matching rules in Chapter 12, “Mapping
Requests to Servlets”, wraps it with a RequestDispatcher object, and returns the
resulting object. If no servlet can be resolved based on the given path, a
RequestDispatcher is provided that returns the content for that path.

The getNamedDispatcher method takes a String argument indicating the name of a
servlet known to the ServletContext. If a servlet is found, it is wrapped with a
RequestDispatcher object and the object is returned. If no servlet is associated with
the given name, the method must return null.
93

To allow RequestDispatcher objects to be obtained using relative paths that are
relative to the path of the current request (not relative to the root of the
ServletContext), the getRequestDispatcher method is provided in the
ServletRequest interface.

The behavior of this method is similar to the method of the same name in the
ServletContext. The servlet container uses information in the request object to
transform the given relative path against the current servlet to a complete path. For
example, in a context rooted at ’/’ and a request to /garden/tools.html, a request
dispatcher obtained via ServletRequest.getRequestDispatcher("header.html")
will behave exactly like a call to
ServletContext.getRequestDispatcher("/garden/header.html").

9.1.1 Query Strings in Request Dispatcher Paths
The ServletContext and ServletRequest methods that create RequestDispatcher
objects using path information allow the optional attachment of query string
information to the path. For example, a Developer may obtain a RequestDispatcher
by using the following code:

Parameters specified in the query string used to create the RequestDispatcher take
precedence over other parameters of the same name passed to the included servlet.
The parameters associated with a RequestDispatcher are scoped to apply only for
the duration of the include or forward call.

9.2 Using a Request Dispatcher
To use a request dispatcher, a servlet calls either the include method or forward
method of the RequestDispatcher interface. The parameters to these methods can
be either the request and response arguments that were passed in via the service
method of the javax.servlet.Servlet interface, or instances of subclasses of the
request and response wrapper classes that were introduced for version 2.3 of the
specification. In the latter case, the wrapper instances must wrap the request or
response objects that the container passed into the service method.

The Container Provider should ensure that the dispatch of the request to a target
servlet occurs in the same thread of the same JVM as the original request.

String path = “/raisins.jsp?orderno=5”;
RequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(request, response);
94 Java Servlet Specification •

9.3 The Include Method
The include method of the RequestDispatcher interface may be called at any time.
The target servlet of the include method has access to all aspects of the request
object, but its use of the response object is more limited.

It can only write information to the ServletOutputStream or Writer of the response
object and commit a response by writing content past the end of the response buffer,
or by explicitly calling the flushBuffer method of the ServletResponse interface. It
cannot set headers or call any method that affects the headers of the response, with
the exception of the HttpServletRequest.getSession() and
HttpServletRequest.getSession(boolean) methods. Any attempt to set the
headers must be ignored, and any call to HttpServletRequest.getSession()
or HttpServletRequest.getSession(boolean) that would require adding a
Cookie response header must throw an IllegalStateException if the response
has been committed.

If the default servlet is the target of a RequestDispatch.include() and the requested
resource does not exist, then the default servlet MUST throw
FileNotFoundException. If the exception isn't caught and handled, and the response
hasn’t been committed, the status code MUST be set to 500.

9.3.1 Included Request Parameters
Except for servlets obtained by using the getNamedDispatcher method, a servlet that
has been invoked by another servlet using the include method of
RequestDispatcher has access to the path by which it was invoked.

The following request attributes must be set:

These attributes are accessible from the included servlet via the getAttribute
method on the request object and their values must be equal to the request URI,
context path, servlet path, path info, and query string of the included servlet,
respectively. If the request is subsequently included, these attributes are replaced for
that include.

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string
Chapter 9 Dispatching Requests 95

If the included servlet was obtained by using the getNamedDispatcher method,
these attributes must not be set.

9.4 The Forward Method
The forward method of the RequestDispatcher interface may be called by the
calling servlet only when no output has been committed to the client. If output data
exists in the response buffer that has not been committed, the content must be
cleared before the target servlet’s service method is called. If the response has been
committed, an IllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet must reflect the
path used to obtain the RequestDispatcher.

The only exception to this is if the RequestDispatcher was obtained via the
getNamedDispatcher method. In this case, the path elements of the request object
must reflect those of the original request.

Before the forward method of the RequestDispatcher interface returns without
exception, the response content must be sent and committed, and closed by the
servlet container, unless the request was put into the asynchronous mode. If an error
occurs in the target of the RequestDispatcher.forward() the exception may be
propagated back through all the calling filters and servlets and eventually back to
the container

9.4.1 Query String
The request dispatching mechanism is responsible for aggregating query string
parameters when forwarding or including requests.

9.4.2 Forwarded Request Parameters
Except for servlets obtained by using the getNamedDispatcher method, a servlet that
has been invoked by another servlet using the forward method of
RequestDispatcher has access to the path of the original request.
96 Java Servlet Specification •

The following request attributes must be set:

The values of these attributes must be equal to the return values of the
HttpServletRequest methods getRequestURI, getContextPath, getServletPath,
getPathInfo, getQueryString respectively, invoked on the request object passed to
the first servlet object in the call chain that received the request from the client.

These attributes are accessible from the forwarded servlet via the getAttribute
method on the request object. Note that these attributes must always reflect the
information in the original request even under the situation that multiple forwards
and subsequent includes are called.

If the forwarded servlet was obtained by using the getNamedDispatcher method,
these attributes must not be set.

9.5 Error Handling
If the servlet that is the target of a request dispatcher throws a runtime exception or
a checked exception of type ServletException or IOException, it should be
propagated to the calling servlet. All other exceptions should be wrapped as
ServletExceptions and the root cause of the exception set to the original exception,
as it should not be propagated.

9.6 Obtaining an AsyncContext
An object implementing the AsyncContext interface may be obtained from the
ServletRequest via one of startAsync methods. Once you have an AsyncContext,
you can use it to either complete the processing of the request via the complete()
method or use one of the dispatch methods described below.

javax.servlet.forward.request_uri
javax.servlet.forward.context_path
javax.servlet.forward.servlet_path
javax.servlet.forward.path_info
javax.servlet.forward.query_string
Chapter 9 Dispatching Requests 97

9.7 The Dispatch Method
The following methods can be used to dispatch requests from the AsyncContext:
■ dispatch(path)

The dispatch method takes a String argument describing a path within the scope
of the ServletContext. This path must be relative to the root of the ServletContext
and begin with a ‘/’.
■ dispatch(servletContext, path)

The dispatch method takes a String argument describing a path within the scope
of the ServletContext specified. This path must be relative to the root of the
ServletContext specified and begin with a ‘/’.
■ dispatch()

The dispatch method takes no argument. It uses the original URI as the path. If the
AsyncContext was initialized via the startAsync(ServletRequest,
ServletResponse) and the request passed is an instance of HttpServletRequest,
then the dispatch is to the URI returned by HttpServletRequest.getRequestURI().
Otherwise the dispatch is to the URI of the request when it was last dispatched by
the container

One of the dispatch methods of the AsyncContext interface may be called by the
application waiting for the asynchronous event to happen. If complete() has been
called on the AsyncContext, an IllegalStateException must be thrown. All the
variations of the dispatch methods returns immediately and do not commit the
response.

The path elements of the request object exposed to the target servlet must reflect the
path specified in the AsyncContext.dispatch.

9.7.1 Query String
The request dispatching mechanism is responsible for aggregating query string
parameters when dispatching requests.

9.7.2 Dispatched Request Parameters
A servlet that has been invoked by using the dispatch method of AsyncContext has
access to the path of the original request.
98 Java Servlet Specification •

The following request attributes must be set:

The values of these attributes must be equal to the return values of the
HttpServletRequest methods getRequestURI, getContextPath, getServletPath,
getPathInfo, getQueryString respectively, invoked on the request object passed to
the first servlet object in the call chain that received the request from the client.

These attributes are accessible from the dispatched servlet via the getAttribute
method on the request object. Note that these attributes must always reflect the
information in the original request even under the situation that multiple dispatches
are called.

javax.servlet.async.request_uri
javax.servlet.async.context_path
javax.servlet.async.servlet_path
javax.servlet.async.path_info
javax.servlet.async.query_string
Chapter 9 Dispatching Requests 99

100 Java Servlet Specification •

CHAPTER 10

Web Applications

A Web application is a collection of servlets, HTML pages, classes, and other
resources that make up a complete application on a Web server. The Web application
can be bundled and run on multiple containers from multiple vendors.

10.1 Web Applications Within Web Servers
A Web application is rooted at a specific path within a Web server. For example, a
catalog application could be located at http://www.mycorp.com/catalog. All
requests that start with this prefix will be routed to the ServletContext which
represents the catalog application.

A servlet container can establish rules for automatic generation of Web applications.
For example a ~user/ mapping could be used to map to a Web application based at
/home/user/public_html/.

By default, an instance of a Web application must run on one VM at any one time.
This behavior can be overridden if the application is marked as “distributable” via
its deployment descriptor. An application marked as distributable must obey a more
restrictive set of rules than is required of a normal Web application. These rules are
set out throughout this specification.

10.2 Relationship to ServletContext
The servlet container must enforce a one to one correspondence between a Web
application and a ServletContext. A ServletContext object provides a servlet
with its view of the application.
101

10.3 Elements of a Web Application
A Web application may consist of the following items:

■ Servlets
■ JSP™ Pages1

■ Utility Classes
■ Static documents (HTML, images, sounds, etc.)
■ Client side Java applets, beans, and classes
■ Descriptive meta information that ties all of the above elements together

10.4 Deployment Hierarchies
This specification defines a hierarchical structure used for deployment and
packaging purposes that can exist in an open file system, in an archive file, or in
some other form. It is recommended, but not required, that servlet containers
support this structure as a runtime representation.

10.5 Directory Structure
A Web application exists as a structured hierarchy of directories. The root of this
hierarchy serves as the document root for files that are part of the application. For
example, for a Web application with the context path /catalog in a Web container,
the index.html file at the base of the Web application hierarchy or in a JAR file
inside WEB-INF/lib that includes the index.html under META-INF/resources
directory can be served to satisfy a request from /catalog/index.html. If an
index.html is present both in the root context and in the META-INF/resources
directory of a JAR file in the WEB-INF/lib directory of the application, then the file
that is available in the root context MUST be used. The rules for matching URLs to
context path are laid out in Chapter 12, “Mapping Requests to Servlets”. Since the
context path of an application determines the URL namespace of the contents of the
Web application, Web containers must reject Web applications defining a context
path that could cause potential conflicts in this URL namespace. This may occur, for
example, by attempting to deploy a second Web application with the same context

1. See the JavaServer Pages specification available from http://java.sun.com/products/jsp.
102 Java Servlet Specification •

path. Since requests are matched to resources in a case-sensitive manner, this
determination of potential conflict must be performed in a case-sensitive manner as
well.

A special directory exists within the application hierarchy named “WEB-INF”. This
directory contains all things related to the application that aren’t in the document
root of the application. Most of the WEB-INF node is not part of the public document
tree of the application. Except for static resources and JSPs packaged in the META-
INF/resources of a JAR file that resides in the WEB-INF/lib directory, no other
files contained in the WEB-INF directory may be served directly to a client by the
container. However, the contents of the WEB-INF directory are visible to servlet code
using the getResource and getResourceAsStream method calls on the
ServletContext, and may be exposed using the RequestDispatcher calls. Hence, if
the Application Developer needs access, from servlet code, to application specific
configuration information that he does not wish to be exposed directly to the Web
client, he may place it under this directory. Since requests are matched to resource
mappings in a case-sensitive manner, client requests for ‘/WEB-INF/foo’, ‘/WEb-
iNf/foo’, for example, should not result in contents of the Web application located
under /WEB-INF being returned, nor any form of directory listing thereof.

The contents of the WEB-INF directory are:

■ The /WEB-INF/web.xml deployment descriptor.
■ The /WEB-INF/classes/ directory for servlet and utility classes. The classes in

this directory must be available to the application class loader.
■ The /WEB-INF/lib/*.jar area for Java ARchive files. These files contain servlets,

beans, static resources and JSPs packaged in a JAR file and other utility classes
useful to the Web application. The Web application class loader must be able to
load classes from any of these archive files.

The Web application class loader must load classes from the WEB-INF/classes
directory first, and then from library JARs in the WEB-INF/lib directory. Also, except
for the case where static resources are packaged in JAR files, any requests from the
client to access the resources in WEB-INF/ directory must be returned with a
SC_NOT_FOUND(404) response.
Chapter 10 Web Applications 103

10.5.1 Example of Application Directory Structure
The following is a listing of all the files in a sample Web application:

10.6 Web Application Archive File
Web applications can be packaged and signed into a Web ARchive format (WAR) file
using the standard Java archive tools. For example, an application for issue tracking
might be distributed in an archive file called issuetrack.war.

When packaged into such a form, a META-INF directory will be present which
contains information useful to Java archive tools. This directory must not be directly
served as content by the container in response to a Web client’s request, though its
contents are visible to servlet code via the getResource and getResourceAsStream
calls on the ServletContext. Also, any requests to access the resources in META-INF
directory must be returned with a SC_NOT_FOUND(404) response.

10.7 Web Application Deployment Descriptor
The Web application deployment descriptor (see Chapter 14, “Deployment
Descriptor””) includes the following types of configuration and deployment
information:

■ ServletContext Init Parameters
■ Session Configuration
■ Servlet/JSP Definitions
■ Servlet/JSP Mappings

/index.html
/howto.jsp
/feedback.jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xml
/WEB-INF/lib/jspbean.jar
/WEB-INF/lib/catalog.jar!/META-
INF/resources/catalog/moreOffers/books.html
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class
104 Java Servlet Specification •

■ MIME Type Mappings
■ Welcome File list
■ Error Pages
■ Security

10.7.1 Dependencies On Extensions
When a number of applications make use of the same code or resources, they will
typically be installed as library files in the container. These files are often common or
standard APIs that can be used without sacrificing portability. Files used only by one
or a few applications will be made available for access as part of the Web
application. The container must provide a directory for these libraries. The files
placed within this directory must be available across all Web applications. The
location of this directory is container-specific. The class loader the servlet container
uses for loading these library files must be the same for all Web applications within
the same JVM. This class loader instance must be somewhere in the chain of parent
class loaders of the Web application class loader.

Application developers need to know what extensions are installed on a Web
container, and containers need to know what dependencies servlets in a WAR have
on such libraries in order to preserve portability.

The application developer depending on such an extension or extensions must
provide a META-INF/MANIFEST.MF entry in the WAR file listing all extensions needed
by the WAR. The format of the manifest entry should follow standard JAR manifest
format. During deployment of the Web application, the Web container must make
the correct versions of the extensions available to the application following the rules
defined by the Optional Package Versioning mechanism
(http://java.sun.com/j2se/1.4/docs/guide/extensions/).

Web containers must also be able to recognize declared dependencies expressed in
the manifest entry of any of the library JARs under the WEB-INF/lib entry in a WAR.

If a Web container is not able to satisfy the dependencies declared in this manner, it
should reject the application with an informative error message.

10.7.2 Web Application Class Loader
The class loader that a container uses to load a servlet in a WAR must allow the
developer to load any resources contained in library JARs within the WAR following
normal Java SE semantics using getResource. As described in the Java EE license
agreement, servlet containers that are not part of a Java EE product should not allow
the application to override Java SE platform classes, such as those in the java.* and
javax.* namespaces, that Java SE does not allow to be modified. The container
Chapter 10 Web Applications 105

should not allow applications to override or access the container’s implementation
classes. It is recommended also that the application class loader be implemented so
that classes and resources packaged within the WAR are loaded in preference to
classes and resources residing in container-wide library JARs. An implementation
MUST also guarantee that for every web application deployed in a container, a call
to Thread.currentThread.getContextClassLoader() MUST return a
ClassLoader instance that implements the contract specified in this section.
Furthermore, the ClassLoader instance MUST be a separate instance for each
deployed web application. The container is required to set the thread context
ClassLoader as described above before making any callbacks (including listener
callbacks) into the web application, and set it back to the original ClassLoader,
once the callback returns.

10.8 Replacing a Web Application
A server should be able to replace an application with a new version without
restarting the container. When an application is replaced, the container should
provide a robust method for preserving session data within that application.

10.9 Error Handling

10.9.1 Request Attributes
A Web application must be able to specify that when errors occur, other resources in
the application are used to provide the content body of the error response. The
specification of these resources is done in the deployment descriptor.

If the location of the error handler is a servlet or a JSP page:

■ The original unwrapped request and response objects created by the container are
passed to the servlet or JSP page.

■ The request path and attributes are set as if a RequestDispatcher.forward to the
error resource had been performed.
106 Java Servlet Specification •

■ The request attributes in TABLE 10-1 must be set.

These attributes allow the servlet to generate specialized content depending on the
status code, the exception type, the error message, the exception object propagated,
and the URI of the request processed by the servlet in which the error occurred (as
determined by the getRequestURI call), and the logical name of the servlet in which
the error occurred.

With the introduction of the exception object to the attributes list for version 2.3 of
this specification, the exception type and error message attributes are redundant.
They are retained for backwards compatibility with earlier versions of the API.

10.9.2 Error Pages
To allow developers to customize the appearance of content returned to a Web client
when a servlet generates an error, the deployment descriptor defines a list of error
page descriptions. The syntax allows the configuration of resources to be returned by
the container either when a servlet or filter calls sendError on the response for
specific status codes, or if the servlet generates an exception or error that propagates
to the container.

If the sendError method is called on the response, the container consults the list of
error page declarations for the Web application that use the status-code syntax and
attempts a match. If there is a match, the container returns the resource as indicated
by the location entry.

A servlet or filter may throw the following exceptions during processing of a
request:

■ runtime exceptions or errors
■ ServletExceptions or subclasses thereof
■ IOExceptions or subclasses thereof

TABLE 10-1 Request Attributes and their types

Request Attributes Type

javax.servlet.error.status_code java.lang.Integer

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

javax.servlet.error.request_uri java.lang.String

javax.servlet.error.servlet_name java.lang.String
Chapter 10 Web Applications 107

The Web application may have declared error pages using the exception-type
element. In this case the container matches the exception type by comparing the
exception thrown with the list of error-page definitions that use the exception-type
element. A match results in the container returning the resource indicated in the
location entry. The closest match in the class hierarchy wins.

If no error-page declaration containing an exception-type fits using the class-
hierarchy match, and the exception thrown is a ServletException or subclass
thereof, the container extracts the wrapped exception, as defined by the
ServletException.getRootCause method. A second pass is made over the error
page declarations, again attempting the match against the error page declarations,
but using the wrapped exception instead.

Error-page declarations using the exception-type element in the deployment
descriptor must be unique up to the class name of the exception-type. Similarly,
error-page declarations using the status-code element must be unique in the
deployment descriptor up to the status code.

The error page mechanism described does not intervene when errors occur when
invoked using the RequestDispatcher or filter.doFilter method. In this way, a
filter or servlet using the RequestDispatcher has the opportunity to handle errors
generated.

If a servlet generates an error that is not handled by the error page mechanism as
described above, the container must ensure to send a response with status 500.

The default servlet and container will use the sendError method to send 4xx and
5xx status responses, so that the error mechanism may be invoked. The default
servlet and container will use the setStatus method for 2xx and 3xx responses and
will not invoke the error page mechanism.

If the application is using asynchronous operations as described in Section 2.3.3.3,
“Asynchronous processing” on page 2-10, it is the application’s responsibility to
handle all errors in application created threads. The container MAY take care of the
errors from the thread issued via AsyncContext.start. For handling errors that
occur during AsyncContext.dispatch see Section n, “Any errors or exceptions
that may occur during the execution of the dispatch methods MUST be caught and
handled by the container as follows:” on page 2-16

10.9.3 Error Filters
The error page mechanism operates on the original unwrapped/unfiltered request
and response objects created by the container. The mechanism described in
Section 6.2.5, “Filters and the RequestDispatcher” may be used to specify filters that
are applied before an error response is generated.
108 Java Servlet Specification •

10.10 Welcome Files
Web Application developers can define an ordered list of partial URIs called
welcome files in the Web application deployment descriptor. The deployment
descriptor syntax for the list is described in the Web application deployment
descriptor schema.

The purpose of this mechanism is to allow the deployer to specify an ordered list of
partial URIs for the container to use for appending to URIs when there is a request
for a URI that corresponds to a directory entry in the WAR not mapped to a Web
component. This kind of request is known as a valid partial request.

The use for this facility is made clear by the following common example: A welcome
file of ‘index.html’ can be defined so that a request to a URL like
host:port/webapp/directory/, where ‘directory’ is an entry in the WAR that is
not mapped to a servlet or JSP page, is returned to the client as
‘host:port/webapp/directory/index.html’.

If a Web container receives a valid partial request, the Web container must examine
the welcome file list defined in the deployment descriptor. The welcome file list is an
ordered list of partial URLs with no trailing or leading /. The Web server must
append each welcome file in the order specified in the deployment descriptor to the
partial request and check whether a static resource in the WAR is mapped to that
request URI. If no match is found, the Web server MUST again append each
welcome file in the order specified in the deployment descriptor to the partial
request and check if a servlet is mapped to that request URI. The Web container
must send the request to the first resource in the WAR that matches. The container
may send the request to the welcome resource with a forward, a redirect, or a
container specific mechanism that is indistinguishable from a direct request.

If no matching welcome file is found in the manner described, the container may
handle the request in a manner it finds suitable. For some configurations this may
mean returning a directory listing or for others returning a 404 response.

Consider a Web application where:

■ The deployment descriptor lists the following welcome files.

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
Chapter 10 Web Applications 109

■ The static content in the WAR is as follows

■ A request URI of /foo will be redirected to a URI of /foo/.
■ A request URI of /foo/ will be returned as /foo/index.html.
■ A request URI of /catalog will be redirected to a URI of /catalog/.
■ A request URI of /catalog/ will be returned as /catalog/default.jsp.
■ A request URI of /catalog/index.html will cause a 404 not found
■ A request URI of /catalog/products will be redirected to a URI of

/catalog/products/.
■ A request URI of /catalog/products/ will be passed to the “default” servlet, if

any. If no “default” servlet is mapped, the request may cause a 404 not found,
may cause a directory listing including shop.jsp and register.jsp, or may
cause other behavior defined by the container. See Section 12.2, “Specification of
Mappings” for the definition of “default” servlet.

■ All of the above static content can also be packaged in a JAR file with the content
listed above packaged in the META-INF/resources directory of the jar file. The
JAR file can then be included in the WEB-INF/lib directory of the web
application.

10.11 Web Application Environment
Servlet containers that are not part of a Java EE technology-compliant
implementation are encouraged, but not required, to implement the application
environment functionality described in Section 15.2.2, “Web Application
Environment and the Java EE specification. If they do not implement the facilities
required to support this environment, upon deploying an application that relies on
them, the container should provide a warning.

/foo/index.html
/foo/default.jsp
/foo/orderform.html
/foo/home.gif
/catalog/default.jsp
/catalog/products/shop.jsp
/catalog/products/register.jsp
110 Java Servlet Specification •

10.12 Web Application Deployment
When a web application is deployed into a container, the following steps must be
performed, in this order, before the web application begins processing client
requests.

■ Instantiate an instance of each event listener identified by a <listener> element
in the deployment descriptor.

■ For instantiated listener instances that implement ServletContextListener, call
the contextInitialized() method.

■ Instantiate an instance of each filter identified by a <filter> element in the
deployment descriptor and call each filter instance’s init() method.

■ Instantiate an instance of each servlet identified by a <servlet> element that
includes a <load-on-startup> element in the order defined by the load-on-
startup element values, and call each servlet instance’s init() method.

10.13 Inclusion of a web.xml Deployment
Descriptor
A web application is NOT required to contain a web.xml if it does NOT contain any
Servlet, Filter, or Listener components or is using annotations to declare the same. In
other words an application containing only static files or JSP pages does not require
a web.xml to be present.
Chapter 10 Web Applications 111

112 Java Servlet Specification •

CHAPTER 11

Application Lifecycle Events

11.1 Introduction
The application events facility gives the Web Application Developer greater control
over the lifecycle of the ServletContext and HttpSession and
ServletRequest, allows for better code factorization, and increases efficiency in
managing the resources that the Web application uses.

11.2 Event Listeners
Application event listeners are classes that implement one or more of the servlet
event listener interfaces. They are instantiated and registered in the Web container at
the time of the deployment of the Web application. They are provided by the
Developer in the WAR.

Servlet event listeners support event notifications for state changes in the
ServletContext, HttpSession and ServletRequest objects. Servlet context
listeners are used to manage resources or state held at a JVM level for the
application. HTTP session listeners are used to manage state or resources associated
with a series of requests made into a Web application from the same client or user.
Servlet request listeners are used to manage state across the lifecycle of servlet
requests. Async listeners are used to manage async events such as time outs and
completion of async processing.

There may be multiple listener classes listening to each event type, and the
Developer may specify the order in which the container invokes the listener beans
for each event type.
113

11.2.1 Event Types and Listener Interfaces
Events types and the listener interfaces used to monitor them are shown in the
following tables:

TABLE 11-1 Servlet Context Events

Event Type Description Listener Interface

Lifecycle The servlet context has just
been created and is available
to service its first request, or
the servlet context is about
to be shut down.

javax.servlet.
ServletContextListener

Changes to
attributes

Attributes on the servlet
context have been added,
removed, or replaced.

javax.servlet.
ServletContextAttributeListe
ner

TABLE 11-2 HTTP Session Events

Event Type Description Listener Interface

Lifecycle An HttpSession has been
created, invalidated, or
timed out.

javax.servlet.http.
HttpSessionListener

Changes to
attributes

Attributes have been added,
removed, or replaced on an
HttpSession.

javax.servlet.http
HttpSessionAttributeListener

Changes to id The id of HttpSession has
been changed.

javax.servlet.http
HttpSessionIdListener

Session migration HttpSession has been
activated or passivated.

javax.servlet.http
HttpSessionActivationListener

Object binding Object has been bound to or
unbound from
HttpSession

javax.servlet.http
HttpSessionBindingListener
114 Java Servlet Specification •

For details of the API, refer to the API reference.

11.2.2 An Example of Listener Use
To illustrate a use of the event scheme, consider a simple Web application containing
a number of servlets that make use of a database. The Developer has provided a
servlet context listener class for management of the database connection.

1. When the application starts up, the listener class is notified. The application logs
on to the database, and stores the connection in the servlet context.

2. Servlets in the application access the connection as needed during activity in the
Web application.

3. When the Web server is shut down, or the application is removed from the Web
server, the listener class is notified and the database connection is closed.

11.3 Listener Class Configuration

11.3.1 Provision of Listener Classes
The Developer of the Web application provides listener classes implementing one or
more of the listener interfaces in the javax.servlet API. Each listener class must
have a public constructor taking no arguments. The listener classes are packaged
into the WAR, either under the WEB-INF/classes archive entry, or inside a JAR in
the WEB-INF/lib directory.

TABLE 11-3 Servlet Request Events

Event Type Description Listener Interface

Lifecycle A servlet request has started
being processed by Web
components.

javax.servlet.
ServletRequestListener

Changes to
attributes

Attributes have been added,
removed, or replaced on a
ServletRequest.

javax.servlet.
ServletRequestAttributeListen
er

Async events A timeout, connection
termination or completion of
async processing

javax.servlet.AsyncListener
Chapter 11 Application Lifecycle Events 115

11.3.2 Deployment Declarations
Listener classes are declared in the Web application deployment descriptor using the
listener element. They are listed by class name in the order in which they are to be
invoked. Unlike other listeners, listeners of type AsyncListener may only be
registered (with a ServletRequest) programmatically.

11.3.3 Listener Registration
The Web container creates an instance of each listener class and registers it for event
notifications prior to the processing of the first request by the application. The Web
container registers the listener instances according to the interfaces they implement
and the order in which they appear in the deployment descriptor. During Web
application execution, listeners corresponding to given events are invoked in the
order of their registration.

11.3.4 Notifications At Shutdown
On application shutdown, listeners are notified in reverse order to their declarations
with notifications to session listeners preceding notifications to context listeners.
Session listeners must be notified of session invalidations prior to context listeners
being notified of application shutdown.

11.4 Deployment Descriptor Example
The following example is the deployment grammar for registering two servlet
context lifecycle listeners and an HttpSession listener.

Suppose that com.acme.MyConnectionManager and com.acme.MyLoggingModule
both implement javax.servlet.ServletContextListener, and that
com.acme.MyLoggingModule additionally implements
javax.servlet.http.HttpSessionListener. Also, the Developer wants
116 Java Servlet Specification •

com.acme.MyConnectionManager to be notified of servlet context lifecycle events
before com.acme.MyLoggingModule. Here is the deployment descriptor for this
application:

11.5 Listener Instances and Threading
The container is required to complete instantiation of the listener classes in a Web
application prior to the start of execution of the first request into the application. The
container must maintain a reference to each listener instance until the last request is
serviced for the Web application.

Attribute changes to ServletContext and HttpSession objects may occur
concurrently. The container is not required to synchronize the resulting notifications
to attribute listener classes. Listener classes that maintain state are responsible for
the integrity of the data and should handle this case explicitly.

11.6 Listener Exceptions
Application code inside a listener may throw an exception during operation. Some
listener notifications occur under the call tree of another component in the
application. An example of this is a servlet that sets a session attribute, where the
session listener throws an unhandled exception. The container must allow
unhandled exceptions to be handled by the error page mechanism described in

<web-app>
<display-name>MyListeningApplication</display-name>
<listener>

<listener-class>com.acme.MyConnectionManager</listener-
class>

</listener>
<listener>

<listener-class>com.acme.MyLoggingModule</listener-class>
</listener>
<servlet>

<display-name>RegistrationServlet</display-name>
...etc

</servlet>
</web-app>
Chapter 11 Application Lifecycle Events 117

Section 10.9, “Error Handling”. If there is no error page specified for those
exceptions, the container must ensure to send a response back with status 500. In this
case no more listeners under that event are called.

Some exceptions do not occur under the call stack of another component in the
application. An example of this is a SessionListener that receives a notification
that a session has timed out and throws an unhandled exception, or of a
ServletContextListener that throws an unhandled exception during a
notification of servlet context initialization, or of a ServletRequestListener that
throws an unhandled exception during a notification of the initialization or the
destruction of the request object. In this case, the Developer has no opportunity to
handle the exception. The container may respond to all subsequent requests to the
Web application with an HTTP status code 500 to indicate an application error.

Developers wishing normal processing to occur after a listener generates an
exception must handle their own exceptions within the notification methods.

11.7 Distributed Containers
In distributed Web containers, HttpSession instances are scoped to the particular
JVM servicing session requests, and the ServletContext object is scoped to the
Web container’s JVM. Distributed containers are not required to propagate either
servlet context events or HttpSession events to other JVMs. Listener class
instances are scoped to one per deployment descriptor declaration per JVM.

11.8 Session Events
Listener classes provide the Developer with a way of tracking sessions within a Web
application. It is often useful in tracking sessions to know whether a session became
invalid because the container timed out the session, or because a Web component
within the application called the invalidate method. The distinction may be
determined indirectly using listeners and the HttpSession API methods.
118 Java Servlet Specification •

CHAPTER 12

Mapping Requests to Servlets

The mapping techniques described in this chapter are required for Web containers
mapping client requests to servlets.1

12.1 Use of URL Paths
Upon receipt of a client request, the Web container determines the Web application
to which to forward it. The Web application selected must have the longest context
path that matches the start of the request URL. The matched part of the URL is the
context path when mapping to servlets.

The Web container next must locate the servlet to process the request using the path
mapping procedure described below.

The path used for mapping to a servlet is the request URL from the request object
minus the context path and the path parameters. The URL path mapping rules
below are used in order. The first successful match is used with no further matches
attempted:

1. The container will try to find an exact match of the path of the request to the path
of the servlet. A successful match selects the servlet.

2. The container will recursively try to match the longest path-prefix. This is done
by stepping down the path tree a directory at a time, using the ’/’ character as a
path separator. The longest match determines the servlet selected.

3. If the last segment in the URL path contains an extension (e.g. .jsp), the servlet
container will try to match a servlet that handles requests for the extension. An
extension is defined as the part of the last segment after the last ’.’ character.

1. Versions of this specification prior to 2.5 made use of these mapping techniques as a suggestion rather than a
requirement, allowing servlet containers to each have their different schemes for mapping client requests to
servlets.
119

4. If neither of the previous three rules result in a servlet match, the container will
attempt to serve content appropriate for the resource requested. If a "default"
servlet is defined for the application, it will be used. Many containers provide an
implicit default servlet for serving content.

The container must use case-sensitive string comparisons for matching.

12.2 Specification of Mappings
In the Web application deployment descriptor, the following syntax is used to define
mappings:

■ A string beginning with a ‘/’ character and ending with a ‘/*’ suffix is used for
path mapping.

■ A string beginning with a ‘*.’ prefix is used as an extension mapping.
■ The empty string ("") is a special URL pattern that exactly maps to the

application's context root, i.e., requests of the form http://host:port/<context-
root>/. In this case the path info is ’/’ and the servlet path and context path is
empty string (““).

■ A string containing only the ’/’ character indicates the "default" servlet of the
application. In this case the servlet path is the request URI minus the context path
and the path info is null.

■ All other strings are used for exact matches only.

12.2.1 Implicit Mappings
If the container has an internal JSP container, the *.jsp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an implicit
mapping. If a *.jsp mapping is defined by the Web application, its mapping takes
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit
mappings take precedence. For example, an implicit mapping of *.shtml could be
mapped to include functionality on the server.
120 Java Servlet Specification •

12.2.2 Example Mapping Set
Consider the following set of mappings:

The following behavior would result:

Note that in the case of /catalog/index.html and /catalog/racecar.bop, the
servlet mapped to “/catalog” is not used because the match is not exact.

TABLE 12-1 Example Set of Maps

Path Pattern Servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

TABLE 12-2 Incoming Paths Applied to Example Maps

Incoming Path Servlet Handling Request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop servlet4

/index.bop servlet4
Chapter 12 Mapping Requests to Servlets 121

122 Java Servlet Specification •

CHAPTER 13

Security

Web applications are created by Application Developers who give, sell, or otherwise
transfer the application to a Deployer for installation into a runtime environment.
Application Developers communicate the security requirements to the Deployers
and the deployment system. This information may be conveyed declaratively via the
application’s deployment descriptor, or by using annotations within the application
code.

This chapter describes the Servlet container security mechanisms and interfaces and
the deployment descriptor and annotation based mechanisms for conveying the
security requirements of applications.

13.1 Introduction
A web application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of web applications will have security
requirements.

Although the quality assurances and implementation details may vary, servlet
containers have mechanisms and infrastructure for meeting these requirements that
share some of the following characteristics:

■ Authentication: The means by which communicating entities prove to one
another that they are acting on behalf of specific identities that are authorized for
access.

■ Access control for resources: The means by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing integrity,
confidentiality, or availability constraints.

■ Data Integrity: The means used to prove that information has not been modified
by a third party while in transit.
123

■ Confidentiality or Data Privacy: The means used to ensure that information is
made available only to users who are authorized to access it.

13.2 Declarative Security
Declarative security refers to the means of expressing an application’s security
model or requirements, including roles, access control, and authentication
requirements in a form external to the application. The deployment descriptor is the
primary vehicle for declarative security in web applications.

The Deployer maps the application’s logical security requirements to a
representation of the security policy that is specific to the runtime environment. At
runtime, the servlet container uses the security policy representation to enforce
authentication and authorization.

The security model applies to the static content part of the web application and to
servlets and filters within the application that are requested by the client. The
security model does not apply when a servlet uses the RequestDispatcher to invoke
a static resource or servlet using a forward or an include.

13.3 Programmatic Security
Programmatic security is used by security aware applications when declarative
security alone is not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the
HttpServletRequest interface:
■ authenticate

■ login

■ logout

■ getRemoteUser
■ isUserInRole
■ getUserPrincipal

The login method allows an application to perform username and password
collection (as an alternative to Form-Based Login). The authenticate methods
allow an application to instigate authentication of the request caller by the container
from within an unconstrained request context.

The logout method is provided to allow an application to reset the caller identity of
a request.
124 Java Servlet Specification •

The getRemoteUser method returns the name of the remote user (that is, the caller)
associated, by the container, with the request.

The isUserInRole method determines if the remote user (that is, the caller)
associated with the request is in a specified security role.

The getUserPrincipal method determines the principal name of the remote user
(that is, the caller) and returns a java.security.Principal object corresponding
to the remote user. Calling the getName method on the Principal returned by
getUserPrincipal returns the name of the remote user. These APIs allow servlets
to make business logic decisions based on the information obtained.

If no user has been authenticated, the getRemoteUser method returns null, the
isUserInRole method always returns false, and the getUserPrincipal method
returns null.

The isUserInRole method expects a String user role-name parameter. A security-
role-ref element should be declared in the deployment descriptor with a role-
name sub-element containing the role name to be passed to the method. A
security-role-ref element should contain a role-link sub-element whose value is
the name of the security role that the user may be mapped into. The container uses
the mapping of security-role-ref to security-role when determining the return
value of the call.

For example, to map the security role reference "FOO" to the security role with role-
name "manager" the syntax would be:

In this case if the servlet called by a user belonging to the "manager" security role
made the API call isUserInRole("FOO") the result would be true.

If no security-role-ref element matching a security-role element has been
declared, the container must default to checking the role-name element argument
against the list of security-role elements for the web application. The
isUserInRole method references the list to determine whether the caller is mapped
to a security role. The developer must be aware that the use of this default
mechanism may limit the flexibility in changing role names in the application
without having to recompile the servlet making the call.

<security-role-ref>
<role-name>FOO</role-name>
<role-link>manager</role-link>

</security-role-ref>
Chapter 13 Security 125

13.4 Programmatic Access Control
Annotations
This section defines the annotations and apis provided to configure the security
constraints enforced by the Servlet Container.

13.4.1 @ServletSecurity Annotation
The @ServletSecurity annotation provides an alternative mechanism for
defining access control constraints equivalent to those that could otherwise have
been expressed declaratively via security-constraint elements in the portable
deployment descriptor or programmatically via the setServletSecurity method
of the ServletRegistration interface. Servlet containers MUST support the use
of the @ServletSecurity annotation on classes (and subclasses thereof) that
implement the javax.servlet.Servlet interface.

package javax.servlet.annotation;

@Inherited

@Documented

@Target(value=TYPE)

@Retention(value=RUNTIME)

public @interface ServletSecurity {

HttpConstraint value();

HttpMethodConstraint[] httpMethodConstraints();

}

@HttpConstraint

TABLE 13-1 The ServletSecurity Interface

Element Description Default

value the HttpConstraint that defines the
protection to be applied to all HTTP
methods that are NOT represented in
the array returned by
httpMethodConstraints.

@HttpConstrai
nt

httpMethodConstraints the array of HTTP method specific
constraints.

{}
126 Java Servlet Specification •

The @HttpConstraint annotation is used within the @ServletSecurity
annotation to represent the security constraint to be applied to all HTTP protocol
methods for which a corresponding @HttpMethodConstraint does NOT occur
within the @ServletSecurity annotation.

package javax.servlet.annotation;

@Documented

@Retention(value=RUNTIME)

public @interface HttpConstraint {

ServletSecurity.EmptyRoleSemantic value();

java.lang.String[] rolesAllowed();

ServletSecurity.TransportGuarantee transportGuarantee();

}

@HttpMethodConstraint

The @HttpMethodConstraint annotation is used within the
@ServletSecurity annotation to represent security constraints on specific HTTP
protocol messages.

package javax.servlet.annotation;

@Documented

@Retention(value=RUNTIME)

public @interface HttpMethodConstraint {

ServletSecurity.EmptyRoleSemantic value();

java.lang.String[] rolesAllowed();

ServletSecurity.TransportGuarantee transportGuarantee();

TABLE 13-2 The HttpConstraint Interface

Element Description Default

value The default authorization semantic
that applies (only) when rolesAllowed
returns an-empty array.

PERMIT

rolesAllowed An array containing the names of the
authorized roles

{}

transportGuarantee The data protection requirements that
must be satisfied by the connections
on which requests arrive.

NONE
Chapter 13 Security 127

}

The @ServletSecurity annotation may be specified on (that is, targeted to) a
Servlet implementation class, and its value is inherited by subclasses according to
the rules defined for the @Inherited meta-annotation. At most one instance of the
@ServletSecurity annotation may occur on a Servlet implementation class, and
the @ServletSecurity annotation MUST NOT be specified on (that is, targeted to)
a Java method.

When one or more @HttpMethodConstraint annotations are defined within a
@ServletSecurity annotation, each @HttpMethodConstraint defines the
security-constraint that applies to the HTTP protocol method identified within
the @HttpMethodConstraint. The encompassing @ServletSecurity annotation
defines the security-constraint that applies to all HTTP protocol methods
other than those for which a corresponding @HttpMethodConstraint is defined
within the @ServletSecurity annotation.

The security-constraint elements defined in the portable deployment
descriptors are authoritative for all the url-patterns occurring within the
constraints.

When a security-constraint in the portable deployment descriptor includes a
url-pattern that is an exact match for a pattern mapped to a class annotated with
@ServletSecurity, the annotation must have no effect on the constraints enforced
by the Servlet container on the pattern.

When metadata-complete=true is defined for a portable deployment descriptor,
the @ServletSecurity annotation does not apply to any of the url-patterns
mapped to (any servlet mapped to) the annotated class in the deployment
descriptor.

TABLE 13-3 The HttpMethodConstraint Interface

Element Description Default

value The HTTP protocol method name

emptyRoleSemantic The default authorization semantic
that applies (only) when rolesAllowed
returns an empty array.

PERMIT

rolesAllowed An array containing the names of the
authorized roles

{}

transportGuarantee The data protection requirements that
must be satisfied by the connections
on which requests arrive.

NONE
128 Java Servlet Specification •

The @ServletSecurity annotation is not applied to the url-patterns of a
ServletRegistration created using the addServlet(String, Servlet)
method of the ServletContext interface, unless the Servlet was constructed by
the createServlet method of the ServletContext interface.

With the exceptions listed above, when a Servlet class is annotated with
@ServletSecurity, the annotation defines the security constraints that apply to all
the url-patterns mapped to all the Servlets mapped to the class.

When a class has not been annotated with the @ServletSecurity annotation, the
access policy that is applied to a servlet mapped from that class is established by the
applicable security-constraint elements, if any, in the corresponding portable
deployment descriptor, or barring any such elements, by the constraints, if any,
established programmatically for the target servlet via the setServletSecurity
method of the ServletRegistration interface.

13.4.1.1 Examples

The following examples demonstrate the use of the ServletSecurity annotation.

CODE EXAMPLE 13-1 for all HTTP methods, no constraints

@ServletSecurity

public class Example1 extends HttpServlet {

}

CODE EXAMPLE 13-2 for all HTTP methods, no auth-constraint, confidential transport
required

@ServletSecurity(@HttpConstraint(transportGuarantee =
TransportGuarantee.CONFIDENTIAL))

public class Example2 extends HttpServlet {

}

CODE EXAMPLE 13-3 for all HTTP methods, all access denied

@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))

public class Example3 extends HttpServlet {

}

CODE EXAMPLE 13-4 for all HTTP methods, auth-constraint requiring membership in Role
R1

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))

public class Example4 extends HttpServlet {

}

CODE EXAMPLE 13-5 for All HTTP methods except GET and POST, no constraints; for
methods GET and POST, auth-constraint requiring membership in
Role R1; for POST, confidential transport required
Chapter 13 Security 129

@ServletSecurity((httpMethodConstraints = {

 @HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),

 @HttpMethodConstraint(value = "POST", rolesAllowed = "R1",

 transportGuarantee = TransportGuarantee.CONFIDENTIAL)

 })

public class Example5 extends HttpServlet {

}

CODE EXAMPLE 13-6 for all HTTP methods except GET auth-constraint requiring
membership in Role R1; for GET, no constraints

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),

 httpMethodConstraints = @HttpMethodConstraint("GET"))

public class Example6 extends HttpServlet {

}

CODE EXAMPLE 13-7 for all HTTP methods except TRACE, auth-constraint requiring
membership in Role R1; for TRACE, all access denied

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),

 httpMethodConstraints = @HttpMethodConstraint(value="TRACE",
emptyRoleSemantic = EmptyRoleSemantic.DENY))

public class Example7 extends HttpServlet {

}

13.4.1.2 Mapping @ServletSecurity to security-constraint

This section describes the mapping of the @ServletSecurity annotation to its
equivalent representation as security-constraint elements. It is provided to
facilitate enforcement using the existing security-constraint enforcement
mechanism of the container. The enforcement by Servlet containers, of the
@ServletSecurity annotation must be equivalent in effect to enforcement, by the
container, of the security-constraint elements resulting from the mapping
defined in this section.

The @ServletSecurity annotation is used to define one method-independent
@HttpConstraint followed by a list of zero or more @HttpMethodConstraint
specifications. The method-independent constraint is applied to all HTTP methods
for which no HTTP method-specific constraint has been defined.

When no @HttpMethodConstraint elements are included, a @ServletSecurity
annotation corresponds to a single security-constraint element containing a
web-resource-collection that contains no http-method elements, and thus
pertains to all HTTP methods.
130 Java Servlet Specification •

The following example depicts the representation of a @ServletSecurity
annotation with no contained @HttpMethodConstraint annotations as a single
security-constraint element. The url-pattern elements defined by the
corresponding servlet (registration) would be included in the web-resource-
collection, and the presence and value of any contained auth-constraint and
user-data-constraint elements would be determined by the mapping of the
@HttpConstraint value as defined in Section 13.4.1.3, “Mapping
@HttpConstraint and @HttpMethodConstraint to XML.” on page 13-132

CODE EXAMPLE 13-8 mapping @ServletSecurity with no contained
@HttpMethodConstraint

@ServletSecurity(@HttpConstraint(rolesAllowed = "Role1"))

<security-constraint>

<web-resource-collection>

<url-pattern>...</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>Role1</role-name>

</auth-constraint>

</security-constraint>

When one or more @HttpMethodConstraint elements are specified, the method-
independent constraint corresponds to a single security-constraint containing
a web-resource-collection that contains on http-method-omission element
for each of the HTTP methods named in the method-specific constraints. Each
@HttpMethodConstraint corresponds to another security-constraint
containing a web-resource-collection containing an http-method element
naming the corresponding HTTP method. The following example depicts the
mapping of a @ServletSecurity annotation with a single contained
@HttpMethodConstraint to two security-constraint elements. The url-
pattern elements defined by the corresponding servlet (registration) would be
included in the web-resource-collection of both constraints, and the presence
and value of any contained auth-constraint and user-data-constraint
elements would be determined by the mapping of the associated
@HttpConstraint and @HttpMethodConstraint values as defined in
Section 13.4.1.3, “Mapping @HttpConstraint and @HttpMethodConstraint to XML.”
on page 13-132

CODE EXAMPLE 13-9 mapping @ServletSecurity with contained @HttpMethodConstraint

@ServletSecurity(value=@HttpConstraint(rolesAllowed = "Role1"),

httpMethodConstraints = @HttpMethodConstraint(value = "TRACE",

emptyRoleSemantic = EmptyRoleSemantic.DENY))

<security-constraint>
Chapter 13 Security 131

<web-resource-collection>

<url-pattern>...</url-pattern>

<http-method-omission>TRACE</http-method-omission>

</web-resource-collection>

<auth-constraint>

<role-name>Role1</role-name>

</auth-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

<url-pattern>...</url-pattern>

<http-method>TRACE</http-method>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

13.4.1.3 Mapping @HttpConstraint and @HttpMethodConstraint to
XML.

This section describes the mapping of the @HttpConstraint and
@HttpMethodConstraint annotation values (defined for use within
@ServletSecurity) to their corresponding auth-constraint and user-data-
constraint representations, These annotations share a common model for
expressing the equivalent of the auth-constraint and user-data-constraint
elements used within the portable deployment descriptor. That model is composed
of the following 3 elements:

■ emptyRoleSemantic

the authorization semantic, either PERMIT or DENY, that applies when no roles are
named in rolesAllowed. The default value for this element is PERMIT, and
DENY is not supported in combination with a non-empty rolesAllowed list.

■ rolesAllowed

A list containing the names of the authorized roles. When this list is empty, its
meaning depends on the value of the emptyRoleSemantic. The role name “*”
has no special meaning when included in the list of allowed roles. The default
value for this element in an empty list.

■ transportGuarantee
132 Java Servlet Specification •

The data protection requirements, either NONE or CONFIDENTIAL, that must be
satisfied by the connections on which requests arrive. This element is equivalent
in meaning to a user-data-constraint containing a transport-guarantee
with the corresponding value. The default value for this element is NONE.

The following examples depict the correspondence between the @HttpConstraint
model described above and auth-constraint and user-data-constraint
elements in web.xml.

CODE EXAMPLE 13-10 emptyRoleSemantic=PERMIT, rolesAllowed={}, transportGuarantee=
NONE

no constraints

CODE EXAMPLE 13-11 emptyRoleSemantic=PERMIT, rolesAllowed={}, transportGuarantee=
CONFIDENTIAL

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

CODE EXAMPLE 13-12 emptyRoleSemantic=PERMIT, rolesAllowed={Role1},
transportGuarantee=NONE

<auth-constraint>

<security-role-name>Role1</security-role-name>

</auth-constraint>

CODE EXAMPLE 13-13 emptyRoleSemantic=PERMIT, rolesAllowed={Role1},
transportGuarantee=CONFIDENTIAL

<auth-constraint>

<security-role-name>Role1</security-role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

CODE EXAMPLE 13-14 emptyRoleSemantic=DENY, rolesAllowed={}, transportGuarantee=
NONE

<auth-constraint/>

CODE EXAMPLE 13-15 emptyRoleSemantic=DENY, rolesAllowed={}, transportGuarantee=
CONFIDENTIAL

<auth-constraint/>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
Chapter 13 Security 133

13.4.2 setServletSecurity of ServletRegistration.Dynamic
The setServletSecurity method may be used within a
ServletContextListener to define the security constraints to be applied to the
mappings defined for a ServletRegistration.

Collection<String> setServletSecurity(ServletSecurityElement
arg);

The javax.servlet.ServletSecurityElement argument to
setServletSecurity is analogous in structure and model to the
ServletSecurity interface of the @ServletSecurity annotation. As such, the
mappings defined in Section 13.4.1.2, “Mapping @ServletSecurity to security-
constraint” on page 13-130, apply analogously to the mapping of a
ServletSecurityElement with contained HttpConstraintElement and
HttpMethodConstraintElement values, to its equivalent security-
constraint representation.

The setServletSecurity method returns the (possibly empty) Set of URL
patterns that are already the exact target of a security-constraint element in
the portable deployment descriptor (and thus were unaffected by the call).

This method throws an IllegalStateException if the ServletContext from
which the ServletRegistration was obtained has already been initialized.

When a security-constraint in the portable deployment descriptor includes a
url-pattern that is an exact match for a pattern mapped by a
ServletRegistration, calls to setServletSecurity on the
ServletRegistration must have no effect on the constraints enforced by the
Servlet container on the pattern.

With the exceptions listed above and including when the Servlet class is annotated
with @ServletSecurity, when setServletSecurity is called on a
ServletRegistration it establishes the security constraints that apply to the
url-patterns of the registration.

13.5 Roles
A security role is a logical grouping of users defined by the Application Developer
or Assembler. When the application is deployed, roles are mapped by a Deployer to
principals or groups in the runtime environment.
134 Java Servlet Specification •

A servlet container enforces declarative or programmatic security for the principal
associated with an incoming request based on the security attributes of the principal.
This may happen in either of the following ways:

1. A deployer has mapped a security role to a user group in the operational
environment. The user groups to which the calling principal belongs are retrieved
from its security attributes. The principal is in the security role only if the
principal belongs to the user group to which the security role has been mapped
by the deployer.

2. A deployer has mapped a security role to a principal name in a security policy
domain. In this case, the principal name of the calling principal is retrieved from
its security attributes. The principal is in the security role only if the principal
name is the same as a principal name to which the security role was mapped.

13.6 Authentication
A web client can authenticate a user to a web server using one of the following
mechanisms:

■ HTTP Basic Authentication
■ HTTP Digest Authentication
■ HTTPS Client Authentication
■ Form Based Authentication

13.6.1 HTTP Basic Authentication
HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests a web client to authenticate the user. As part of the request, the web server
passes the realm (a string) in which the user is to be authenticated. The web client
obtains the username and the password from the user and transmits them to the web
server. The web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords are sent
in simple base64 encoding, and the target server is not authenticated. Additional
protection can alleviate some of these concerns: a secure transport mechanism
(HTTPS), or security at the network level (such as the IPSEC protocol or VPN
strategies) is applied in some deployment scenarios.
Chapter 13 Security 135

13.6.2 HTTP Digest Authentication
Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user
based on a username and a password. However, unlike HTTP Basic Authentication,
HTTP Digest Authentication does not send user passwords over the network. In
HTTP Digest authentication the client sends a one-way cryptographic hash of the
password (and additional data). Although passwords are not sent on the wire, HTTP
Digest authentication requires that clear text password equivalents1 be avaialble to
the authenticating container so that it can validate received authenticators by
calculating the expected digest. Servlet containers SHOULD to support
HTTP_DIGEST authentication.

13.6.3 Form Based Authentication
The look and feel of the “login screen” cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces a required form
based authentication mechanism which allows a Developer to control the look and
feel of the login screens.

The web application deployment descriptor contains entries for a login form and
error page. The login form must contain fields for entering a username and a
password. These fields must be named j_username and j_password, respectively.

When a user attempts to access a protected web resource, the container checks the
user’s authentication. If the user is authenticated and possesses authority to access
the resource, the requested web resource is activated and a reference to it is returned.
If the user is not authenticated, all of the following steps occur:

1. The login form associated with the security constraint is sent to the client and the
URL path triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and password
fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from the
form.

5. If authentication fails, the error page is returned using either a forward or a
redirect, and the status code of the response is set to 200.

6. If authentication succeeds, the authenticated user’s principal is checked to see if it
is in an authorized role for accessing the resource.

1. The password equivalents can be such that they can only be used to authenticate as the user at a specific
realm.
136 Java Servlet Specification •

7. If the user is authorized, the client is redirected to the resource using the stored
URL path.

The error page sent to a user that is not authenticated contains information about
the failure.

Form Based Authentication has the same lack of security as Basic Authentication
since the user password is transmitted as plain text and the target server is not
authenticated. Again additional protection can alleviate some of these concerns: a
secure transport mechanism (HTTPS), or security at the network level (such as the
IPSEC protocol or VPN strategies) is applied in some deployment scenarios.

The login method of the HttpServletRequest interface provides an alternative means
for an application to control the look and feel of it’s login screens.

13.6.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement.
Form based login should be used only when sessions are being maintained by
cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login form
must always be j_security_check. This restriction is made so that the login form
will work no matter which resource it is for, and to avoid requiring the server to
specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTML page:

If the form based login is invoked because of an HTTP request, the original request
parameters must be preserved by the container for use if, on successful
authentication, it redirects the call to the requested resource.

If the user is authenticated using form login and has created an HTTP session, the
timeout or invalidation of that session leads to the user being logged out in the sense
that subsequent requests must cause the user to be re-authenticated. The scope of the
logout is the same as that of the authentication: for example, if the container
supports single signon, such as Java EE technology compliant web containers, the
user would need to reauthenticate with any of the web applications hosted on the
web container.

<form method=”POST” action=”j_security_check”>
<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>
</form>
Chapter 13 Security 137

13.6.4 HTTPS Client Authentication
End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the client to possess a Public Key Certificate
(PKC). Currently, PKCs are useful in e-commerce applications and also for a single-
signon from within the browser.

13.6.5 Additional Container Authentication Mechanisms
Servlet containers should provide public interfaces that may be used to integrate and
configure additional HTTP message layer authentication mechanisms for use by the
container on behalf of deployed applications. These interfaces should be offered for
use by parties other than the container vendor (including application developers,
system administrators, and system integrators).

To facilitate portable implementation and integration of additional container
authentication mechanisms, it is recommended that all Servlet containers implement
the Servlet Container Profile of The Javatm Authentication SPI for Containers (i.e.,
JSR 196). The SPI is available for download at:
http://www.jcp.org/en/jsr/detail?id=196

13.7 Server Tracking of Authentication
Information
As the underlying security identities (such as users and groups) to which roles are
mapped in a runtime environment are environment specific rather than application
specific, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same authentication information to represent a principal to all
applications deployed in the same container, and

3. Require re-authentication of users only when a security policy domain boundary
has been crossed.
138 Java Servlet Specification •

Therefore, a servlet container is required to track authentication information at the
container level (rather than at the web application level). This allows users
authenticated for one web application to access other resources managed by the
container permitted to the same security identity.

13.8 Specifying Security Constraints
Security constraints are a declarative way of defining the protection of web content.
A security constraint associates authorization and or user data constraints with
HTTP operations on web resources. A security constraint, represented as a
security-constraint in a deployment descriptor, consists of the following
elements:

■ web resource collection (web-resource-collection in deployment descriptor)
■ authorization constraint (auth-constraint in deployment descriptor)
■ user data constraint (user-data-constraint in deployment descriptor)

The HTTP operations and web resources to which a security constraint applies (i.e.
the constrained requests) are identified by one or more web resource collections. A
web resource collection consists of the following elements:

■ URL patterns (url-pattern in deployment descriptor)
■ HTTP methods (http-method or http-method-omission elements in the

deployment descriptor)

An authorization constraint establishes a requirement for authentication and names
the authorization roles permitted to perform the constrained requests. A user must
be a member of at least one of the named roles to be permitted to perform the
constrained requests. The special role name “*” is a shorthand for all role names
defined in the deployment descriptor. An authorization constraint that names no
roles indicates that access to the constrained requests must not be permitted under
any circumstances. An authorization constraint consists of the following element:

■ role name (role-name in deployment descriptor)

A user data constraint establishes a requirement that the constrained requests be
received over a protected transport layer connection. The strength of the required
protection is defined by the value of the transport guarantee. A transport
guarantee of INTEGRAL is used to establish a requirement for content integrity
and a transport guarantee of CONFIDENTIAL is used to establish a requirement
for confidentiality. The transport guarantee of “NONE” indicates that the
container must accept the constrained requests when received on any connection
including an unprotected one. A user data constraint consists of the following
element:

■ transport guarantee (transport-guarantee in deployment descriptor)
Chapter 13 Security 139

If no authorization constraint applies to a request, the container must accept the
request without requiring user authentication. If no user data constraint applies to
a request, the container must accept the request when received over any
connection including an unprotected one.

13.8.1 Combining Constraints
For the purpose of combining constraints, an HTTP method is said to occur within a
web-resource-collection when no HTTP methods are named in the collection,
or the collection specifically names the HTTP method in a contained http-method
element, or the collection contains one or more http-method-omission elements,
none of which names the HTTP method.

When a url-pattern and HTTP method pair occurs in combination(i.e, within a web-
resource-collection) in multiple security constraints, the constraints (on the
pattern and method) are defined by combining the individual constraints. The rules
for combining constraints in which the same pattern and method occur are as
follows:

The combination of authorization constraints that name roles or that imply roles via
the name “*” shall yield the union of the role names in the individual constraints as
permitted roles. A security constraint that does not contain an authorization
constraint shall combine with authorization constraints that name or imply roles to
allow unauthenticated access. The special case of an authorization constraint that
names no roles shall combine with any other constraints to override their affects and
cause access to be precluded.

The combination of user-data-constraints that apply to a common url-
pattern and http-method shall yield the union of connection types accepted by
the individual constraints as acceptable connection types. A security constraint that
does not contain a user-data-constraint shall combine with other user-data-
constraint to cause the unprotected connection type to be an accepted connection
type.
140 Java Servlet Specification •

13.8.2 Example
The following example illustrates the combination of constraints and their
translation into a table of applicable constraints. Suppose that a deployment
descriptor contained the following security constraints.

<security-constraint>

<web-resource-collection>
 <web-resource-name>precluded methods</web-resource-name>
 <url-pattern>/*</url-pattern>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <url-pattern>/acme/retail/*</url-pattern>
 <http-method-omission>GET</http-method-omission>
 <http-method-omission>POST</http-method-omission>
</web-resource-collection>

<auth-constraint/>

</security-constraint>

<security-constraint>

<web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>PUT</http-method>
</web-resource-collection>

<auth-constraint>
 <role-name>SALESCLERK</role-name>
</auth-constraint>

</security-constraint>
Chapter 13 Security 141

<security-constraint>

<web-resource-collection>
 <web-resource-name>wholesale 2</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
</web-resource-collection>

<auth-constraint>
 <role-name>CONTRACTOR</role-name>
</auth-constraint>

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>
 <web-resource-name>retail</web-resource-name>
 <url-pattern>/acme/retail/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
</web-resource-collection>

<auth-constraint>
 <role-name>CONTRACTOR</role-name>
 <role-name>HOMEOWNER</role-name>
</auth-constraint>

</security-constraint>
142 Java Servlet Specification •

The translation of this hypothetical deployment descriptor would yield the
constraints defined in TABLE 13-4.

13.8.3 Processing Requests
When a Servlet container receives a request, it shall use the algorithm described in
“Use of URL Paths” on page 119 to select the constraints (if any) defined on the url-
pattern that is the best match to the request URI. If no constraints are selected, the
container shall accept the request. Otherwise the container shall determine if the
HTTP method of the request is constrained at the selected pattern. If it is not, the
request shall be accepted. Otherwise, the request must satisfy the constraints that
apply to the HTTP method at the url-pattern. Both of the following rules must be
satisfied for the request to be accepted and dispatched to the associated servlet.

TABLE 13-4 Security Constraint Table

url-pattern
http-
method permitted roles supported connection types

/* all
methods
except
GET,
POST

access
precluded

not constrained

/acme/wholesale/* all
methods
except
GET,
POST

access precluded not constrained

/acme/wholesale/* GET CONTRACTOR
SALESCLERK

not constrained

/acme/wholesale/* POST CONTRACTOR CONFIDENTIAL

/acme/retail/* all
methods
except
GET,
POST

access precluded not constrained

/acme/retail/* GET CONTRACTOR
HOMEOWNER

not constrained

/acme/retail/* POST CONTRACTOR
HOMEOWNER

not constrained
Chapter 13 Security 143

1. The characteristics of the connection on which the request was received must
satisfy at least one of the supported connection types defined by the constraints. If
this rule is not satisfied, the container shall reject the request and redirect it to the
HTTPS port.2

2. The authentication characteristics of the request must satisfy any authentication
and role requirements defined by the constraints. If this rule is not satisfied
because access has been precluded (by an authorization constraint naming no
roles), the request shall be rejected as forbidden and a 403 (SC_FORBIDDEN)
status code shall be returned to the user. If access is restricted to permitted roles
and the request has not been authenticated, the request shall be rejected as
unauthorized and a 401 (SC_UNAUTHORIZED) status code shall be returned to
cause authentication. If access is restricted to permitted roles and the
authentication identity of the request is not a member of any of these roles, the
request shall be rejected as forbidden and a 403 (SC_FORBIDDEN) status code
shall be returned to the user.

13.9 Default Policies
By default, authentication is not needed to access resources. Authentication is
required when the security constraints (if any) that contain the url-pattern that is
the best match for the request URI combine to impose an auth-constraint
(naming roles) on the HTTP method of the request. Similarly, a protected transport is
not required unless the security constraints that apply to the request combine to
impose a user-data-constraint (with a protected transport-guarantee) on
the HTTP method of the request.

13.10 Login and Logout
The container establishes the caller identity of a request prior to dispatching the
request to the servlet engine. The caller identity remains unchanged throughout the
processing of the request or until the application sucessfully calls authenticate,
login or logout on the request. For asynchronous requests, the caller identity
established at the initial dispatch remains unchanged until the processing of the
overall request completes, or the application successfully calls authenticate,
login or logout on the request.

2. As an optimization, a container should reject the request as forbidden and return a 403 (SC_FORBIDDEN)
status code if it knows that access will ultimately be precluded (by an authorization constraint naming no
roles).
144 Java Servlet Specification •

Being logged into an application during the processing of a request, corresponds
precisely to there being a valid non-null caller identity associated with the request as
may be determined by calling getRemoteUser or getUserPrincipal on the
request. A null return value from either of these methods indicates that the caller is
not logged into the application with respect to the processing of the request.

Containers may create HTTP Session objects to track login state. If a developer
creates a session while a user is not authenticated, and the container then
authenticates the user, the session visible to developer code after login must be the
same session object that was created prior to login occurring so that there is no loss
of session information.
Chapter 13 Security 145

146 Java Servlet Specification •

CHAPTER 14

Deployment Descriptor

This chapter specifies the Java™ Servlet Specification version 3.0 requirements for
Web container support of deployment descriptors. The deployment descriptor
conveys the elements and configuration information of a Web application between
Application Developers, Application Assemblers, and Deployers.

For Java Servlets v.2.4 and greater, the deployment descriptor is defined in terms of
an XML schema document.

For backwards compatibility of applications written to the 2.2 version of the API,
Web containers are also required to support the 2.2 version of the deployment
descriptor. For backwards compatibility of applications written to the 2.3 version of
the API, Web containers are also required to support the 2.3 version of the
deployment descriptor. The 2.2 version is available at
http://java.sun.com/j2ee/dtds/web-app_2_2.dtd and 2.3 version is
available at http://java.sun.com/dtd/web-app_2_3.dtd.

14.1 Deployment Descriptor Elements
The following types of configuration and deployment information are required to be
supported in the Web application deployment descriptor for all servlet containers:

■ ServletContext Init Parameters
■ Session Configuration
■ Servlet Declaration
■ Servlet Mappings
■ Application Lifecyle Listener classes
■ Filter Definitions and Filter Mappings
■ MIME Type Mappings
■ Welcome File list
■ Error Pages
■ Locale and Encoding Mappings
147

■ Security configuration, including login-config, security-constraint, security-role,
security-role-ref and run-as

14.2 Rules for Processing the Deployment
Descriptor
This section lists some general rules that Web containers and developers must note
concerning the processing of the deployment descriptor for a Web application.

■ Web containers must remove all leading and trailing whitespace, which is defined
as “S(white space)” in XML 1.0 (http://www.w3.org/TR/2000/WD-xml-2e-
20000814), for the element content of the text nodes of a deployment descriptor.

■ The deployment descriptor must be valid against the schema. Web containers and
tools that manipulate Web applications have a wide range of options for checking
the validity of a WAR. This includes checking the validity of the deployment
descriptor document held within.

Additionally, it is recommended that Web containers and tools that manipulate
Web applications provide a level of semantic checking. For example, it should be
checked that a role referenced in a security constraint has the same name as one of
the security roles defined in the deployment descriptor.

In cases of non-conformant Web applications, tools and containers should inform
the developer with descriptive error messages. High-end application server
vendors are encouraged to supply this kind of validity checking in the form of a
tool separate from the container.

■ The sub elements under web-app can be in an arbitrary order in this version of the
specification. Because of the restriction of XML Schema, The multiplicity of the
elements distributable, session-config, welcome-file-list, jsp-config,
login-config, and locale-encoding-mapping-list was changed from
“optional” to “0 or more”. The containers must inform the developer with a
descriptive error message when the deployment descriptor contains more than
one element of session-config, jsp-config, and login-config. The container
must concatenate the items in welcome-file-list and locale-encoding-
mapping-list when there are multiple occurrences. The multiple occurrence of
distributable must be treated exactly in the same way as the single occurrence
of distributable.

■ URI paths specified in the deployment descriptor are assumed to be in URL-
decoded form. The containers must inform the developer with a descriptive error
message when URL contains CR(#xD) or LF(#xA). The containers must preserve
all other characters including whitespace in URL.
148 Java Servlet Specification •

■ Containers must attempt to canonicalize paths in the deployment descriptor. For
example, paths of the form /a/../b must be interpreted as /b. Paths beginning or
resolving to paths that begin with ../ are not valid paths in the deployment
descriptor.

■ URI paths referring to a resource relative to the root of the WAR, or a path
mapping relative to the root of the WAR, unless otherwise specified, should begin
with a leading /.

■ In elements whose value is an enumerated type, the value is case sensitive.

14.3 Deployment Descriptor
The deployment descriptor for this revision of the specification is available at
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

14.4 Deployment Descriptor Diagram
This section illustrates the elements in deployment descriptor. Attributes are not
shown in the diagrams. See Deployment Descriptor Schema for the detailed
information.

1. web-app Element
Chapter 14 Deployment Descriptor 149

The web-app element is the root deployment descriptor for a Web application.
This element contains the following elements.This element has a required
attribute version to specify to which version of the schema the deployment
descriptor conforms. All sub elements under this element can be in an arbitrary
order.

FIGURE 14-1 web-app Element Structure
150 Java Servlet Specification •

2. description Element

The description element is to provide a text describing the parent element.
This element occurs not only under the web-app element but also under other
multiple elements. It has an optional attribute xml:lang to indicate which
language is used in the description. The default value of this attribute is English
(“en”).

3. display-name Element

The display-name contains a short name that is intended to be displayed by
tools. The display name need not to be unique. This element has an optional
attribute xml:lang to specify the language.

4. icon Element

The icon contains small-icon and large-icon elements that specify the file names
for small and large GIF or JPEG icon images used to represent the parent element
in a GUI tool.

5. distributable Element

The distributable indicates that this Web application is programmed
appropriately to be deployed into a distributed servlet container.

6. context-param Element

The context-param contains the declaration of a Web application’s servlet
context initialization parameters.

7. filter Element

The filter declares a filter in the Web application. The filter is mapped to either
a servlet or a URL pattern in the filter-mapping element, using the filter-
name value to reference. Filters can access the initialization parameters declared
in the deployment descriptor at runtime via the FilterConfig interface. The
filter-name element is the logical name of the filter. It must be unique within
the Web application. The element content of filter-name element must not be
empty. The filter-class is the fully qualified class name of the filter. The
Chapter 14 Deployment Descriptor 151

init-param element contains name-value pair as an initialization parameter of
this filter. The optional async-supported element, when specified, indicates
that the filter supports asynchronous request processing.

FIGURE 14-2 filter Element Structure

8. filter-mapping Element
152 Java Servlet Specification •

The filter-mapping is used by the container to decide which filters to apply to
a request in what order. The value of the filter-name must be one of the filter
declarations in the deployment descriptor. The matching request can be specified
either url-pattern or servlet-name.

FIGURE 14-3 filter-mapping Element Structure

9. listener Element

The listener indicates the deployment properties for an application listener
bean. The sub-element listener-class declares that a class in the application
must be registered as a Web application listener bean. The value is the fully
qualified classname of the listener class.

FIGURE 14-4 listener Element Structure
Chapter 14 Deployment Descriptor 153

10. servlet Element

The servlet is used to declare a servlet. It contains the declarative data of a
servlet. The jsp-file element contains the full path to a JSP file within the web
application beginning with a “/”. If a jsp-file is specified and the load-on-
startup element is present, then the JSP should be precompiled and loaded. The
servlet-name element contains the canonical name of the servlet. Each servlet
name is unique within the web application. The element content of servlet-
name must not be empty. The servlet-class contains the fully qualified class
name of the servlet. The run-as element specifies the identity to be used for the
execution of a component. It contains an optional description, and the name of
a security role specified by the role-name element. The element load-on-
startup indicates that this servlet should be loaded (instantiated and have its
init() called) on the startup of the Web application. The element content of this
element must be an integer indicating the order in which the servlet should be
loaded. If the value is a negative integer, or the element is not present, the
container is free to load the servlet whenever it chooses. If the value is a positive
integer or 0, the container must load and initialize the servlet as the application is
deployed. The container must guarantee that servlets marked with lower integers
are loaded before servlets marked with higher integers. The container may choose
the order of loading of servlets with the same load-on-startup value. The
security-role-ref element declares the security role reference in a
component’s or in a deployment component’s code. It consists of an optional
description, the security role name used in the code (role-name), and an
optional link to a security role (role-link). If the security role is not specified,
the deployer must choose an appropriate security role. The optional async-
supported element, when specified, indicates that the Servlet can support
asynchronous request processing. If a servlet supports fileupload functionality
and processing of mime-multipart requests, the configuration for the same can be
provided via the multipart-config element in the descriptor. The
154 Java Servlet Specification •

multipart-config element can be used to specify the location where the files
can be stored, maximum size of the file being uploaded, maximum request size
and the size threshold after which the file will be written to the disk.

FIGURE 14-5 servlet Element Structure
Chapter 14 Deployment Descriptor 155

11. servlet-mapping Element

The servlet-mapping defines a mapping between a servlet and a URL pattern.

FIGURE 14-6 servlet-mapping Element Structure

12. session-config Element

The session-config defines the session parameters for this Web application.
The sub-element session-timeout defines the default session time out interval
for all sessions created in this Web application. The specified time out must be
expressed in a whole number of minutes. If the time out is 0 or less, the container
ensures the default behavior of sessions is never to time out. If this element is not
specified, the container must set its default time out period.

FIGURE 14-7 session-config Element Structure

13. mime-mapping Element
156 Java Servlet Specification •

The mime-mapping defines a mapping between an extension and a mime type.
The extension element contains a string describing an extension, such as “txt”.

FIGURE 14-8 mime-mapping Element Structure

14. welcome-file-list Element

The welcome-file-list contains an ordered list of welcome files. The sub-
element welcome-file contains a file name to use as a default welcome file,
such as index.html

FIGURE 14-9 welcome-file-list Element Structure

15. error-page Element

The error-page contains a mapping between an error code or an exception type
to the path of a resource in the Web application. The sub-element exception-
type contains a fully qualified class name of a Java exception type. The sub-
Chapter 14 Deployment Descriptor 157

element location element contains the location of the resource in the web
application relative to the root of the web application. The value of the location
must have a leading ‘/’.

FIGURE 14-10 error-page Element Structure

16. jsp-config Element

The jsp-config is used to provide global configuration information for the JSP
files in a web application. It has two sub-elements, taglib and jsp-property-
group. The taglib element can be used to provide information on a tag library
that is used by a JSP page within the Web application. See JavaServer Pages
specification version 2.1 for detail.

FIGURE 14-11 jsp-config Element Structure
158 Java Servlet Specification •

17. security-constraint Element

The security-constraint is used to associate security constraints with one or
more web resource collections. The sub-element web-resource-collection
indentifies a subset of the resources and HTTP methods on those resources within
a Web application to which a security constraint applies. The auth-constraint
indicates the user roles that should be permitted access to this resource collection.
The role-name used here must either correspond to the role-name of one of
the security-role elements defined for this Web application, or be the
specially reserved role-name "*" that is a compact syntax for indicating all roles in
the web application. If both "*" and role names appear, the container interprets
this as all roles. If no roles are defined, no user is allowed access to the portion of
the Web application described by the containing security-constraint. The
container matches role names case sensitively when determining access. The
user-data-constraint indicates how data communicated between the client
Chapter 14 Deployment Descriptor 159

and container should be protected by the sub-element transport-guarantee.
The legal values of the transport-guarantee is either one of NONE, INTEGRAL,
or CONFIDENTIAL.

FIGURE 14-12 security-constraint Element Structure

18. login-config Element

The login-config is used to configure the authentication method that should
be used, the realm name that should be used for this application, and the
attributes that are needed by the form login mechanism. The sub-element auth-
method configures the authentication mechanism for the Web application. The
element content must be either BASIC, DIGEST, FORM, CLIENT-CERT, or a
160 Java Servlet Specification •

vendor-specific authentication scheme. The realm-name indicates the realm
name to use for the authentication scheme chosen for the Web application. The
form-login-config specifies the login and error pages that should be used in
FORM based login. If FORM based login is not used, these elements are ignored.

FIGURE 14-13 login-config Element Structure

19. security-role Element

The security-role defines a security role. The sub-element role-name
designates the name of the security role. The name must conform to the lexical
rules for NMTOKEN.

FIGURE 14-14 security-role Element Structure

20. env-entry Element

The env-entry declares an application’s environment entry. The sub-element
env-entry-name contains the name of a deployment component’s environment
entry. The name is a JNDI name relative to the java:comp/env context. The
name must be unique within a deployment component. The env-entry-type
contains the fully-qualified Java type of the environment entry value that is
Chapter 14 Deployment Descriptor 161

expected by the application’s code. The sub-element env-entry-value
designates the value of a deployment component’s environment entry. The value
must be a String that is valid for the constructor of the specified type that takes
a single String as a parameter, or a single character for java.lang.Character.
The optional injection-target element is used to define the injection of the
named resource into fields or JavaBeans properties. An injection-target
specifies a class and a name within that class into which a resource should be
injected. The injection-target-class specifies the fully qualified class name
that is the target of the injection. The injection-target-name specifies the
target within the specified class. The target is first looked for as a JavaBean
property name. If not found, the target is looked for as a field name. The specified
resource will be injected into the target during initialization of the class by either
calling the set method for the target property or by setting a value into the name
162 Java Servlet Specification •

filed. If an injection-target is specified for the environment entry, the env-
entry-type may be ommitted or MUST match the type of the injection target. If
no injection-target is specified, the env-entry-type is required.

FIGURE 14-15 env-entry Element Structure

21. ejb-ref Element

The ejb-ref declares the reference to an enterprise bean’s home. The ejb-ref-
name specifies the name used in the code of the deployment component that is
referencing the enterprise bean. The ejb-ref-type is the expected type of the
referenced enterprise bean, which is either Entity or Session. The home defines
the fully qualified name of the referenced enterprise bean’s home interface. The
remote defines the fully qualified name of the referenced enterprise bean’s
remote interface. The ejb-link specifies that an EJB reference is linked to the
Chapter 14 Deployment Descriptor 163

enterprise bean. See Java Platform, Enterprise Edition, version 6 for more detail.
In addition to these elements, the injection-target element can be used to define
injection of the named enterprise bean into a component field or property.

FIGURE 14-16 ejb-ref Element Structure

22. ejb-local-ref Element
164 Java Servlet Specification •

The ejb-local-ref declares the reference to the enterprise bean’s local home.
The local-home defines the fully qualified name of the enterprise bean’s local
home interface. The local defines the fully qualified name of the enterprise
bean’s local interface.

FIGURE 14-17 ejb-local-ref Element Structure

23. service-ref Element

The service-ref declares the reference to a Web service. The service-ref-
name declares the logical name that the components in the module use to look up
the Web service. It is recommended that all service reference names start with
/service/. The service-interface defines the fully qualified class name of
the JAX-WS Service interface that the client depends on. In most cases, the value
will be javax.xml.rpc.Service. A JAX-WS generated Service Interface class may
also be specified. The wsdl-file element contains the URI location of a WSDL
file. The location is relative to the root of the module. The jaxrpc-mapping-
file contains the name of a file that describes the JAX-WS mapping between the
Java interaces used by the application and the WSDL description in the wsdl-
file. The file name is a relative path within the module file. The service-
Chapter 14 Deployment Descriptor 165

qname element declares the specific WSDL service element that is being referred
to. It is not specified if no wsdl-file is declared. The port-component-ref
element declares a client dependency on the container for resolving a Service
Endpoint Interface to a WSDL port. It optionally associates the Service Endpoint
Interface with a particular port-component. This is only used by the container for
a Service.getPort(Class) method call. The handler element declares the handler
for a port-component. Handlers can access the init-param name-value pairs
using the HandlerInfo interface. If port-name is not specified, the handler is
assumed to be associated with all ports of the service. See JSR-109 Specification
[http://www.jcp.org/en/jsr/detail?id=109] for detail. The container that is not
a part of a Java EE implementation is not required to support this element.

FIGURE 14-18 service-ref Element Structure
166 Java Servlet Specification •

24. resource-ref Element

The resource-ref contains the declaration of a deployment component’s
reference to the external resource. The res-ref-name specifies the name of a
resource manager connection factory reference. The name is a JNDI name relative
to the java:comp/env context. The name must be unique within a deployment
file. The res-type element specifies the type of the data source.The type is the
fully qualified Java language class or the interface expected to be implemented by
the data source. The res-auth specifies whether the deployment component
code signs on programmatically to the resource manager, or whether the
container will sign on to the resource manager on behalf of the deployment
component. In the latter case, the container uses the information supplied by the
deployer. The res-sharing-scope specifies whether connections obtained
through the given resource manager connection factory reference can be shared.
The value, if specified, must be either Shareable or Unshareable. The optional
injection-target element is used to define injection of the named resource
into fields or JavaBeans properties.

FIGURE 14-19 resource-ref Element Structure
Chapter 14 Deployment Descriptor 167

25. resource-env-ref Element

The resource-env-ref contains the deployment component’s reference to the
administered object associated with a resource in the deployment component’s
environment. The resource-env-ref-name specifies the name of the resource
environment reference. The value is the environment entry name used in the
deployment component code and is a JNDI name relative to the java:comp/env
context and must be unique within the deployment component. The resource-
env-ref-type specifies the type of the resource environment reference. It is the
fully qualified name of a Java language class or the interface. The optional
injection-target element is used to define injection of the named resource
into fields or JavaBeans properties. The resource-env-ref-type MUST be
supplied unless an injection target is specified, in which case the type of the target
is used. If both are specified, the type MUST be assignment compatible with the
type of the injection target.

FIGURE 14-20 resource-env-ref Element Structure

26. message-destination-ref Element

The message-destination-ref element contains a declaration of deployment
component’s reference to a message destination associated with a resource in
deployment component’s environment. The message-destination-ref-name
element specifies the name of a message destination reference; its value is the
environment entry name used in deployment component code. The name is a
168 Java Servlet Specification •

JNDI name relative to the java:comp/env context and must be unique within an
ejb-jar for enterprise beans or a deployment file for others. The message-
destination-type specifies the type of the destination. The type is specified by
the Java interface expected to be implemented by the destination. The message-
destination-usage specifies the use of the message destination indicated by
the reference. The value indicates whether messages are consumed from the
message destination, produced for the destination, or both. The Assembler makes
use of this information in linking producers of a destination with its consumers.
The message-destination-link links a message destination reference or
message-driven bean to a message destination. The Assembler sets the value to
reflect the flow of messages between producers and consumers in the application.
The value must be the message-destination-name of a message destination in
the same deployment file or in another deployment file in the same Java EE
application unit. Alternatively, the value may be composed of a path name
specifying a deployment file containing the referenced message destination with
the message-destination-name of the destination appended and separated
from the path name by "#". The path name is relative to the deployment file
containing deployment component that is referencing the message destination.
This allows multiple message destinations with the same name to be uniquely
identified. The optional injection-target element is used to define injection
of the named resource into fields or JavaBeans properties. The message-
destination-type MUST be specified unless an injection target is specified, in
which case the type of the target is used. If both are specified, the type MUST be
assignment compatible with the type of the injection target.
Chapter 14 Deployment Descriptor 169

Example:

FIGURE 14-21 message-destination-ref Element Structure

<message-destination-ref>
<message-destination-ref-name>

jms/StockQueue
</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Consumes
</message-destination-usage>
<message-destination-link>

CorporateStocks
</message-destination-link>

</message-destination-ref>
170 Java Servlet Specification •

27. message-destination Element

The message-destination specifies a message destination. The logical destination
described by this element is mapped to a physical destination by the deployer.
The message-destination-name element specifies a name for a message
destination. This name must be unique among the names of message destinations
within the deployment file.

Example:

FIGURE 14-22 message-destination Element Structure

28. locale-encoding-mapping-list Element

The locale-encoding-mapping-list contains the mapping between the
locale and the encoding. specified by the sub-element locale-encoding-
mapping.

<message-destination>
<message-destination-name>

CorporateStocks
</message-destination-name>

</message-destination>
Chapter 14 Deployment Descriptor 171

Example:

FIGURE 14-23 locale-encoding-mapping-list Element Structure

14.5 Examples
The following examples illustrate the usage of the definitions listed in the
deployment descriptor schema.

<locale-encoding-mapping-list>
<locale-encoding-mapping>

<locale>ja</locale>
<encoding>Shift_JIS</encoding>

</locale-encoding-mapping>
</locale-encoding-mapping-list>
172 Java Servlet Specification •

14.5.1 A Basic Example

CODE EXAMPLE 14-1 Basic Deployment Descriptor Example

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd”
version=”2.5”>

<display-name>A Simple Application</display-name>
<context-param>

<param-name>Webmaster</param-name>
<param-value>webmaster@mycorp.com</param-value>

</context-param>
<servlet>

<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet
 </servlet-class>
<init-param>

<param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>

<extension>pdf</extension>
<mime-type>application/pdf</mime-type>

</mime-mapping>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>

</welcome-file-list>
<error-page>

<error-code>404</error-code>
<location>/404.html</location>

</error-page>
</web-app>
Chapter 14 Deployment Descriptor 173

14.5.2 An Example of Security

CODE EXAMPLE 14-2 Deployment Descriptor Example Using Security

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"
version=”2.5”>

<display-name>A Secure Application</display-name>
<servlet>
<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet
</servlet-class>

<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>
<security-role-ref>

<role-name>MGR</role-name>
<!-- role name used in code -->
<role-link>manager</role-link>

</security-role-ref>
</servlet>
<security-role>
<role-name>manager</role-name>
</security-role>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</servlet-mapping>
<security-constraint>
<web-resource-collection>

<web-resource-name>SalesInfo
</web-resource-name>
<url-pattern>/salesinfo/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL
</transport-guarantee>
174 Java Servlet Specification •

</user-data-constraint>
</security-constraint>

</web-app>

CODE EXAMPLE 14-2 Deployment Descriptor Example Using Security
Chapter 14 Deployment Descriptor 175

176 Java Servlet Specification •

CHAPTER 15

Requirements related to other
Specifications

This chapter lists the requirements for web containers that are included in products
that also include other Java technologies.

In the following sections any reference to Java EE applies to not only the full Java EE
profile but also any profile that includes support for Servlet, like the Java EE Web
Profile. For more information on profiles please refer to the Java EE platform
specification.

15.1 Sessions
Distributed servlet containers that are part of a Java EE implementation must
support the mechanism necessary for migrating other Java EE objects from one JVM
to another.

15.2 Web Applications

15.2.1 Web Application Class Loader
Servlet containers that are part of a Java EE product should not allow the application
to override Java SE or Java EE platform classes, such as those in java.* and javax.*
namespaces, that either Java SE or Java EE do not allow to be modified.
177

15.2.2 Web Application Environment
Java EE defines a naming environment that allows applications to easily access
resources and external information without explicit knowledge of how the external
information is named or organized.

As servlets are an integral component type of Java EE technology, provision has been
made in the Web application deployment descriptor for specifying information
allowing a servlet to obtain references to resources and enterprise beans. The
deployment elements that contain this information are:
■ env-entry
■ ejb-ref
■ ejb-local-ref
■ resource-ref
■ resource-env-ref
■ service-ref
■ message-destination-ref
■ persistence-context-ref
■ persistence-unit-ref

The developer uses these elements to describe certain objects that the Web
application requires to be registered in the JNDI namespace in the Web container at
runtime.

The requirements of the Java EE environment with regard to setting up the
environment are described in Chapter 5 of the Java EE Specification.

Servlet containers that are part of a Java EE technology-compliant implementation
are required to support this syntax. Consult the Java EE Specification for more
details. This type of servlet container must support lookups of such objects and calls
made to those objects when performed on a thread managed by the servlet container.
This type of servlet container should support this behavior when performed on
threads created by the developer, but are not currently required to do so. Such a
requirement will be added in the next version of this specification. Developers are
cautioned that depending on this capability for application-created threads is not
recommended, as it is non-portable.

15.2.3 JNDI Name for Web Module Context Root URL
The Java EE Platform Specification defines a standardized global JNDI namespace
and a series of related namespaces that map to various scopes of a Java EE
application. These namespaces can be used by applications to portably retrieve
references to components and resources. This section defines the JNDI names by
which the base url for a web application is required to be registered.
178 Java Servlet Specification •

The name of the pre-defined java.net.URL resource for the context root of a web
application has the following syntax:

java:global[/<app-name>]/<module-name>!ROOT in the global namespace and

java:app/<module-name>!ROOT in the application-specific namespace.

Plese see section EE 8.1.1 (Component creation) and EE 8.1.2 (Application assembly)
for the rules to determine the app name and module name

The <app-name> is applicable only when the webapp is packaged within a .ear file.

The java:app prefix allows a component executing within a Java EE application to
access an application-specific namespace. The java:app name allows a module in an
enterprise application to reference the context root of another module in the same
enterprise application. The <module-name> is a required part of the syntax for
java:app url.

Examples

The above URL can then be used within an application as follows:

If a web application is deployed standalone with module-name as myWebApp.The
URL can then be injected into another web module as follows:

CODE EXAMPLE 15-1

@Resource(lookup=“java:global/myWebApp!ROOT”)

URL myWebApp;

When packaged in an ear file named myApp it can be used as follows:

CODE EXAMPLE 15-2

@Resource(lookup=“java:global/myApp/myWebApp!ROOT”)

URL myWebApp;

15.3 Security
This section details the additional security requirements for web containers when
included in a product that also contains EJB, JACC and or JASPIC. The following
sections call out the requirements
Chapter 15 Requirements related to other Specifications 179

15.3.1 Propagation of Security Identity in EJB™ Calls
A security identity, or principal, must always be provided for use in a call to an
enterprise bean. The default mode in calls to enterprise beans from web applications
is for the security identity of a web user to be propagated to the EJB container.

In other scenarios, web containers are required to allow web users that are not known
to the web container or to the EJB container to make calls:

■ Web containers are required to support access to web resources by clients that
have not authenticated themselves to the container. This is the common mode of
access to web resources on the Internet.

■ Application code may be the sole processor of signon and customization of data
based on caller identity.

In these scenarios, a web application deployment descriptor may specify a run-as
element. When a run-as role is specified for a Servlet, the Servlet container must
propagate a principal mapped to the role as the security identity in any call from the
Servlet to an EJBs, including calls originating from the Servlet’s init and destroy
methods. The security role name must be one of the security role names defined for
the web application.

For web containers running as part of a Java EE platform, the use of run-as elements
must be supported both for calls to EJB components within the same Java EE
application, and for calls to EJB components deployed in other Java EE applications.

15.3.2 Container Authorization Requirements
In a Java EE product or in a product that includes support for Java Authorization
Contracts for Containers (JACC, i.e, JSR 115), all Servlet containers MUST implement
support for JACC. The JACC Specification is available for download at
http://www.jcp.org/en/jsr/detail?id=115

15.3.3 Container Authentication Requirements
In a Java EE product, or a product that includes support for The Java Authentication
SPI for Containers (JASPIC, i.e, JSR 196), all Servlet containers MUST implement the
Servlet Container Profile of the JASPIC specification. The JASPIC Specification is
available for download at http://www.jcp.org/en/jsr/detail?id=196
180 Java Servlet Specification •

15.4 Deployment
This section details the deployment descriptor, packaging and deployment
descriptor processing requirements of a Java EE technology compliant container and
products that include support for JSP and or Web Services.

15.4.1 Deployment Descriptor Elements
The following additional elements exist in the Web application deployment
descriptor to meet the requirements of Web containers that are JSP pages enabled or
part of a Java EE application server. They are not required to be supported by
containers wishing to support only the servlet specification:

■ jsp-config
■ Syntax for declaring resource references (env-entry, ejb-ref, ejb-local-ref,

resource-ref, resource-env-ref)
■ Syntax for specifying the message destination (message-destination, message-

destination-ref)
■ Reference to a Web service (service-ref)
■ Reference to a Persistence context (persistence-context-ref)
■ Reference to a Persistence Unit (persistence-unit-ref)

The syntax for these elements is now held in the JavaServer Pages specification
version 2.2, and the Java EE specification.

15.4.2 Packaging and Deployment of JAX-WS
Components
Web containers may choose to support running components written to implement a
Web service endpoint as defined by the JAX-RPC and/or JAX-WS specifications.
Web containers embedded in a Java EE conformant implementation are required to
support JAX-RPC and JAX-WS web service components. This section describes the
packaging and deployment model for web containers when included in a product
which also supports JAX-RPC and JAX-WS.

JSR-109 [http://jcp.org/jsr/detail/109.jsp] defines the model for packaging a
Web service interface with its associated WSDL description and associated classes. It
defines a mechanism for JAX-WS and JAX-RPC enabled Web containers to link to a
component that implements this Web service. A JAX-WS or JAX-RPC Web service
implementation component uses the APIs defined by the JAX-WS and/or JAX-RPC
Chapter 15 Requirements related to other Specifications 181

specifications, which defines its contract with the JAX-WS and/or JAX-RPC enabled
Web containers. It is packaged into the WAR file. The Web service developer makes
a declaration of this component using the usual <servlet> declaration.

JAX-WS and JAX-RPC enabled Web containers must support the developer in using
the Web deployment descriptor to define the following information for the endpoint
implementation component, using the same syntax as for HTTP Servlet components
using the servlet element. The child elements are used to specify endpoint
information in the following way:

■ the servlet-name element defines a logical name which may be used to locate
this endpoint description among the other Web components in the WAR

■ the servlet-class element provides the fully qualified Java class name of this
endpoint implementation

■ the description element(s) may be used to describe the component and may be
displayed in a tool

■ the load-on-startup element specifies the order in which the component is
initialized relative to other Web components in the Web container

■ the security-role-ref element may be used to test whether the authenticated
user is in a logical security role

■ the run-as element may be used to override the identity propagated to EJBs
called by this component

Any servlet initialization parameters defined by the developer for this Web
component may be ignored by the container. Additionally, the JAX-WS and JAX-RPC
enabled Web component inherits the traditional Web component mechanisms for
defining the following information:

■ mapping of the component to the Web container’s URL namespace using the
servlet mapping technique

■ authorization constraints on Web components using security constraints
■ the ability to use servlet filters to provide low-level byte stream support for

manipulating JAX-WS and/or JAX-RPC messages using the filter mapping
technique

■ the time out characteristics of any HTTP sessions that are associated with the
component

■ links to Java EE objects stored in the JNDI namespace

All of the above requirements can be met using the pluggability mechanism defined
in Section 8.2, “Pluggability” on page 8-69.
182 Java Servlet Specification •

15.4.3 Rules for Processing the Deployment Descriptor
The containers and tools that are part of Java EE technology-compliant
implementation are required to validate the deployment descriptor against the XML
schema for structural correctness. The validation is recommended, but not required
for the web containers and tools that are not part of a Java EE technology compliant
implementation.

15.5 Annotations and Resource Injection
The Java Metadata specification (JSR-175), which is part of J2SE 5.0 and greater,
provides a means of specifying configuration data in Java code. Metadata in Java
code is also referred to as annotations. In Java EE, annotations are used to declare
dependencies on external resources and configuration data in Java code without the
need to define that data in a configuration file.

This section describes the behavior of annotations and resource injection in Java EE
technology compliant Servlet containers. This section expands on the Java EE
specification section 5 titled “Resources, Naming, and Injection.”

Annotations must be supported on the following container managed classes that
implement the following interfaces and are declared in the web application
deployment descriptor or using the annotations defined in Section 8.1, “Annotations
and pluggability” on page 8-65 or added programmatically.

Web containers are not required to perform resource injection for annotations
occurring in classes other than those listed above in TABLE 15-1.

TABLE 15-1 Components and Interfaces supporting Annotations and Dependency
Injection

Component Type Classes implementing the following interfaces

Servlets javax.servlet.Servlet

Filters javax.servlet.Filter

Listeners javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionIdListener
javax.servlet.AsyncListener
Chapter 15 Requirements related to other Specifications 183

References must be injected prior to any lifecycle methods being called and the
component instance being made available the application.

In a web application, classes using resource injection will have their annotations
processed only if they are located in the WEB-INF/classes directory, or if they are
packaged in a jar file located in WEB-INF/lib. Containers may optionally process
resource injection annotations for classes found elsewhere in the application’s
classpath.

The web application deployment descriptor contains a metadata-complete attribute
on the web-app element. The metadata-complete attribute defines whether the
web.xml descriptor is complete, or whether other sources of metadata used by the
deployment process should be considered. Metadata may come from the web.xml
file, web-fragment.xml files, annotations on class files in WEB-INF/classes, and
annotations on classes in jar files in the WEB-INF/lib directory. If metadata-
complete is set to "true", the deployment tool only examines the web.xml file and
must ignore annotations such as @WebServlet, @WebFilter, and @WebListener
present in the class files of the application, and must also ignore any web-
fragment.xml descriptor packaged in a jar file in WEB-INF/lib. If the metadata-
complete attribute is not specified or is set to "false", the deployment tool must
examine the class files and web-fragment.xml files for metadata,as previously
specified.

The web-fragment.xml also contains the metadata-complete attribute on the web-
fragment element. The attribute defines whether the web-fragment.xml descriptor
is complete for the given fragment, or whether it should scan for annotations in the
classes in the associated jar file. If metadata-complete is set to “true” the
deployment tool only examines the web-fragment.xml and must ignore annotations
such as @WebServlet, @WebFilter and @WebListener present in the class files of the
fragment. If metadata-complete is not specified or is set to “false” the deployment
tool must examine the class files for metadata.

Following are the annotations that are required by a Java EE technology compliant
web container.

15.5.1 @DeclareRoles
This annotation is used to define the security roles that comprise the security model
of the application. This annotation is specified on a class, and it is used to define
roles that could be tested (i.e., by calling isUserInRole) from within the methods of
the annotated class. Roles that are implicitly declared as a result of their use in a
@RolesAllowed need not be explicitly declared using the @DeclareRoles annotaion.
The @DeclareRoles annotation may only be defined in classes implementing the
javax.servlet.Servlet interface or a subclass thereof.
184 Java Servlet Specification •

Following is an example of how this annotation would be used.

Declaring @DeclareRoles ("BusinessAdmin") is equivalent to defining the following
in the web.xml.

This annotation is not used to relink application roles to other roles. When such
linking is necessary, it is accomplished by defining an appropriate security-role-ref in
the associated deployment descriptor.

When a call is made to isUserInRole from the annotated class, the caller identity
associated with the invocation of the class is tested for membership in the role with
the same name as the argument to isCallerInRole. If a security-role-ref has
been defined for the argument role-name the caller is tested for membership in the
role mapped to the role-name.

For further details on the @DeclareRoles annotation refer to the Common
Annotations for the Java™ Platform™ specification (JSR 250) section 2.10.

15.5.2 @EJB Annotation
Enterprise JavaBeans™ 3.0 (EJB) components may referenced from a web component
using the @EJB annotation. The @EJB annotation provides the equivalent
functionality of declaring the ejb-ref or ejb-local-ref elements in the
deployment descriptor. Fields that have a corresponding @EJB annotation are
injected with the a reference to the corresponding EJB component.

An example:

@EJB private ShoppingCart myCart;

CODE EXAMPLE 15-3 @DeclareRoles Annotation Example

@DeclareRoles("BusinessAdmin")

 public class CalculatorServlet {

 //...

 }

CODE EXAMPLE 15-4 @DeclareRoles web.xml

<web-app>

 <security-role>

 <role-name>BusinessAdmin</role-name>

 </security-role>

 </web-app>
Chapter 15 Requirements related to other Specifications 185

In the case above a reference to the EJB component “myCart” is injected as the value of
the private field “myCart” prior to the classs declaring the injection being made
available.

The behavior the @EJB annotation is further detailed in section 15.5 of the EJB 3.0
specification (JSR220).

15.5.3 @EJBs Annotation
The @EJBs annotation allows more than one @EJB annotations to be declared on a
single resource.

An example:

The example above the EJB components ShoppingCart and Calculator are made
available to ShoppingCartServlet. The ShoppingCartServlet must still look up the
references using JNDI but the EJBs do not need to declared in the web.xml file.

The @EJBs annotation is discussed in further detailed in section 15.5 of the EJB 3.0
specification (JSR220).

15.5.4 @Resource Annotation
The @Resource annotation is used to declare a reference to a resource such as a data
source, Java Messaging Service (JMS) destination, or environment entry. This
annotation is equivalent to declaring a resource-ref, message-destination-ref or
env-ref, or resource-env-ref element in the deployment descriptor.

The @Resource annotation is specified on a class, method or field. The container is
responsible injecting references to resources declared by the @Resource annotation
and mapping it to the proper JNDI resources. See the Java EE Specification Chapter
5 for further details.

CODE EXAMPLE 15-5 @EJBs Annotation Example

@EJBs({@EJB(Calculator), @EJB(ShoppingCart)})

public class ShoppingCartServlet {

//...

}

186 Java Servlet Specification •

An example of a @Resource annotation follows:

In the example code above, a servlet, filter, or listener declares a field catalogDS of
type javax.sql.DataSource for which the reference to the data source is injected by
the container prior to the component being made available to the application. The
data source JNDI mapping is inferred from the field name “catalogDS” and type
(javax.sql.DataSource). Moreover, the catalogDS resource no longer needs to be
defined in the deployment descriptor.

The semantics of the @Resource annotation are further detailed in the Common
Annotations for the Java™ Platform™ specification (JSR 250) Section 2.3 and Java EE
Specification specification 5.2.5.

15.5.5 @PersistenceContext Annotation
This annotation specifies the container managed entity manager for referenced
persistence units.

An example:

The behavior the @PersistenceContext annotation is further detailed in section
10.4.1 of the Java Persistence API, Version 2.0 (JSR317).

15.5.6 @PersistenceContexts Annotation
The PersistenceContexts annotation allows more than one @PersistenceContext
to be declared on a resource. The behavior the @PersistenceContext annotation is
further detailed in section 10.4.1 of the Java Persistence API, version 2.0 (JSR 317).

CODE EXAMPLE 15-6 @Resource Example

@Resource private javax.sql.DataSource catalogDS;

public getProductsByCategory() {

 // get a connection and execute the query

 Connection conn = catalogDS.getConnection();

..

}

CODE EXAMPLE 15-7 @PersistenceContext Example

@PersistenceContext (type=EXTENDED)

EntityManager em;
Chapter 15 Requirements related to other Specifications 187

15.5.7 @PersistenceUnit Annotation
The @PersistenceUnit annotation provides Enterprise Java Beans components
declared in a servlet a reference to a entity manager factory. The entity manager
factory is bound to a separate persistence.xml configuration file as described in
section 5.10 of the EJB 3.0 specification (JSR220).

An example:

The behavior the @PersistenceUnit annotation is further detailed in section 10.4.2
of the Java Persistence API, version 2.0 (JSR317).

15.5.8 @PersistenceUnits Annotation
This annotation allows for more than one @PersistentUnit annotations to be
declared on a resource. The behavior the @PersistenceUnits annotation is further
detailed in section 10.4.2 of the Java Persistence API, version 2.0 (JSR317).

15.5.9 @PostConstruct Annotation
The @PostConstruct annotation is declared on a method that does not take any
arguments, and must not throw any checked exceptions. The return value must be
void. The method MUST be called after the resources injections have been completed
and before any lifecycle methods on the component are called.

An example:

The example above shows a method using the @PostConstruct annotation.

CODE EXAMPLE 15-8 @PersistenceUnit Example

@PersistenceUnit

EntityManagerFactory emf;

CODE EXAMPLE 15-9 @PostConstruct Example

@PostConstruct

public void postConstruct() {

...

}

188 Java Servlet Specification •

The @PostConstruct annnotation MUST be supported by all classes that support
dependency injection and called even if the class does not request any resources to
be injected. If the method throws an unchecked exception the class MUST not be put
into service and no method on that instance can be called.

Refer to the Java EE specification section 2.5 and the Common Annotations for the
Java™ Platform™ specification section 2.5 for more details.

15.5.10 @PreDestroy Annotation
The @PreDestroy annotation is declared on a method of a container managed
component. The method is called prior to component being removed by the
container.

An example:

The method annotated with @PreDestroy must return void and must not throw a
checked exception. The method may be public, protected, package private or private.
The method must not be static however it may be final.

Refer to the JSR 250 section 2.6 for more details.

15.5.11 @Resources Annotation
The @Resources annotation acts as a container for multiple @Resource annotations
because the Java MetaData specification does not allow for multiple annotations
with the same name on the same annotation target.

An example:

CODE EXAMPLE 15-10 @PreDestroy Example

@PreDestroy

public void cleanup() {

// clean up any open resources

...

}

CODE EXAMPLE 15-11 @Resources Example

@Resources ({

@Resource(name=”myDB” type=javax.sql.DataSource),

@Resource(name=”myMQ” type=javax.jms.ConnectionFactory)

})
Chapter 15 Requirements related to other Specifications 189

In the example above a JMS connection factory and a data source are made available
to the CalculatorServlet by means of an @Resources annotation.

The semantics of the @Resources annotation are further detailed in the Common
Annotations for the Java™ Platform™ specification (JSR 250) section 2.4.

15.5.12 @RunAs Annotation
The @RunAs annotation is equivalent to the run-as element in the deployment
descriptor. The @RunAs annotation may only be defined in classes implementing the
javax.servlet.Servlet interface or a subclass thereof.

An example:

The @RunAs(“Admin”) statement would be equivalent to defining the following in
the web.xml.

public class CalculatorServlet {

//...

}

CODE EXAMPLE 15-12 @RunAs Example

@RunAs(“Admin”)

public class CalculatorServlet {

@EJB private ShoppingCart myCart;

public void doGet(HttpServletRequest, req, HttpServletResponse
res) {

//....
myCart.getTotal();

//....
}

}

//....

}

CODE EXAMPLE 15-13 @RunAs web.xml Example

<servlet>

<servlet-name>CalculatorServlet</servlet-name>

<run-as>Admin</run-as>

</servlet>

CODE EXAMPLE 15-11 @Resources Example
190 Java Servlet Specification •

The example above shows how a servlet uses the @RunAs annotation to propagate the
security identity “Admin” to an EJB component when the myCart.getTotal()
method is called. For further details on propagating identities see Section 15.3.1,
“Propagation of Security Identity in EJB™ Calls” on page 15-180.

For further details on the @RunAs annotation refer to the Common Annotations for
the Java™ Platform™ specification (JSR 250) section 2.6.

15.5.13 @WebServiceRef Annotation
The @WebServiceRef annotation provides a reference to a web service in a web
component in same way as a resource-ref element would in the deployment
descriptor.

An example:

@WebServiceRef private MyService service;

In this example a reference to the web service “MyService” will be injected to the
class declaring the annotation.

This annotation and behavior are further detailed in the JAX-WS Specification (JSR
224) section 7.

15.5.14 @WebServiceRefs Annotation
This annotation allows for more than one @WebServiceRef annotations to be declared
on a single resource. The behavior of this annotation is further detailed in the JAX-WS
Specification (JSR 224) section 7.

15.5.15 Managed Beans and JSR 299 requirements
In a product that also supports Managed Beans, implementations MUST support use
of Managed Beans as Servlets, Filters and Listeners. In a product that also supports
JSR 299, implementations MUST similarly support use of JSR 299-style managed
beans.

In a product that also supports JSR-299, an implementation must support use of 299-
style managed beans as Servlet, Filter, Listener, HttpUpgradeHandler classes in an
application. Servlet annotations may be directly applied to these beans. JSR-299
specifies the requirements for these container-managed bean instances with respect to
instantiation, injection and other services. JSR-299 defines @Dependent pseudo-scope,
Servlets, Filters and Listeners MUST be in that scope.
Chapter 15 Requirements related to other Specifications 191

192 Java Servlet Specification •

APPENDIX A

Change Log

This document is the final release of the Java Servlet 3.0 Servlet specification
developed under the Java Community ProcessSM (JCP).

A.1 Changes since Servlet 3.0
1. Section 1.6, “Compatibility with Java Servlet Specification Version 2.5”. Remove

subsection 1.6.1 “Listener ordering”.

2. Section 2.3.3.3, “Asynchronous processing”. And javadoc of AsyncContext.

a. Clarified the behavior of AsyncListener.onStartAsync.

b. Fixed errors and comments in Code Examples.

c. Clarified the behavior of AsyncContext.getRequest and
AsyncContext.getResponse after the asynchronous request is completed or
dispatched.

d. Clarified the behavior of AsyncListener when there is an error.

3. Added Section 2.3.3.5, “Upgrade Processing”, and new classes ProtocolHandler
and WebConnection.

4. Section 3.2, “File upload”. Clarified when multi-part/form-data are processed.

5. Added Asynchronous IO in Section 3.7, “Non Blocking IO” and Section 5.7,
“Lifetime of the Response Object”.

6. Added HttpSessionIdListener to the list listeners in Section 4.4.3.1, “void
addListener(String className)”, Section 4.4.3.2, “<T extends EventListener> void
addListener(T t)”, Section 4.4.3.3, “void addListener(Class <? extends
193

EventListener> listenerClass)”, Section 4.4.3.4, “<T extends EventListener> void
createListener(Class<T> clazz)”, Section 8.1.4, “@WebListener” and Section 15.5,
“Annotations and Resource Injection”.

7. Section 5.1, “Buffering”. And javadoc of ServletResponse.
Clarified the behavior of ServletResponse.reset.

8. Section 6.2.1, “Filter Lifecycle” (4). Required filters and servlet processing in the
same thread.

9. Section 7.2, “Creating a Session”. Add change session id.

10. Section 8.1, “Annotations and pluggability”, Section 8.2.1, “Modularity of
web.xml” and Section 1.6.1, “Processing annotations”. Clarify the behavior of
metadata-complete.

11. Section 8.1.1, “@WebServlet” on page 8-65”. Programmatically adding servlet
with a name different from that specified in annotation.

12. Section 8.2.2, “Ordering of web.xml and web-fragment.xml” and Section 8.2.4,
“Shared libraries / runtimes pluggability”. The processing of HandlesTypes
annotation is applied irrespective to setting of metadata-complete.

13. Section 8.2.3, “Assembling the descriptor from web.xml, web-fragment.xml and
annotations”. Clarify the order in which listeners are invoked.

14. Section 8.2.4, “Shared libraries / runtimes pluggability”Clarify the creation of
instance of ServletCotnainerInitilizer.

15. Section 9.4, “The Forward Method”. Clarified the behavior of the response when
the request is put in asynchronous mode.

16. TABLE 11-2. Add a “Changes to id” events.

17. Section 11.3.3, “Listener Registration”. Add “corresponding to given events”.

18. Section 15.3.1, “Propagation of Security Identity in EJB™ Calls”. Explicitly
mentioned the Servlet.init and Servlet.destroy.

19. Section 15.5.15, “Managed Beans and JSR 299 requirements” on page 15-191. Add
HttpUpgradeHandler.

20. Added generic in ServletRequestWrapper, ServletResponseWrapper and
HandlesTypes.

21. Javadoc of HttpServletResponse.sendRedirect: Supported network-path
reference.

22. Add new methods ServletRequest.getContentLengthLong and
ServletResponse.setContentLengthLong.
194 Java Servlet Specification •

A.2 Changes since Servlet 3.0 Proposed Final
Draft
1. Re-factored some of the Async APIs - moved addAsyncListener to AsyncContext

and renamed it to addListener. Moved setAsyncTimeout to AsyncContext and
renamed it to setTimeout.

2. Clarified some of the semantics around concurrent access to the request and
response in async processing.

3. Updated pluggability rules for resource reference elements.

4. Added a new annotation - @ServletSecurity (and associated annotation for the
fields) for defining security as opposed to re-using the @RolesAllowed,
@PermitAll, @DenyAll

A.3 Changes since Servlet 3.0 Public Review
1. Updated isAsyncStarted to return false once a dispatch to the container or a call

to complete is done from the async handler

2. Added ordering support for fragments

3. Added support for file upload

4. Added support for loading static resources and JSPs from JAR files that are
included in the META-INF/resources directory of the JAR file which is then
bundled in the WEB-INF/lib directory

5. Changed annotation names based on feedback on Public Review of the
specification

6. Added programmatic login / logout support

7. Added support for security related common annotations - @RolesAllowed,
@PermitAll, @DenyAll

8. Clarified welcome files
Appendix A Change Log 195

A.4 Changes since Servlet 3.0 EDR
1. The suspend / resume APIs are no longer present in the specification. They have

been replaced by startAsync and AsyncContext which now has forward and
complete methods.

2. Annotation names have changed and there are only top level annotations. The
method level annotations for declaring the servlet methods are no longer being
used.

3. The rules for assembling web.xml from fragments and annotations is described.

A.5 Changes since Servlet 2.5 MR6
1. Added support for annotations and web fragments

2. Added support for suspend / resume to allow async support in servlets.

3. Added support for initializing servlets and filters from the ServletContext at
initialization time.

4. Added support for HttpOnly cookies and allow configuring cookies.

5. Added convenience methods to ServletRequest to get Response and
ServletContext

A.6 Changes since Servlet 2.5 MR 5

A.6.1 Clarify SRV 8.4 "The Forward Method"
Change the last sentence of the section which currently is:

"Before the forward method of the RequestDispatcher interface returns, the
response content must be sent and committed, and closed by the servlet
container."

to read:
196 Java Servlet Specification •

"Before the forward method of the RequestDispatcher interface returns without
exception, the response content must be sent and committed, and closed by the
servlet container. If an error occurs in the target of the
RequestDispatcher.forward() the exception may be propogated back through
all the calling filters and servlets and eventually back to the container."

A.6.2 Update Deployment descriptor "http-method
values allowed"
The facet for http-method element in the deployment descriptor is currently more
restrictive than the http specification. The following change is being made to the
descriptor to allow the set of method names as defined by the http specification. The
pattern value of http-methodType is being changed from

<xsd:pattern value="[\p{L}-[\p{Cc}\p{Z}]]+"/>

to closely match what the HTTP specification lists as allowable HTTP methods
names.

<xsd:pattern value="[!-~-[\(\)<>@,;:"/\[\]?=\
{\}\\\p{Z}]]+"/>

A.6.3 Clarify SRV 7.7.1 "Threading Issues"
Change the paragraph which currently is:

"Multiple servlets executing request threads may have active access to a single
session object at the same time. The Developer has the responsibility for
synchronizing access to session resources as appropriate."

to read:

"Multiple servlets executing request threads may have active access to the same
session object at the same time. The container must ensure that manipulation of
internal data structures representing the session attributes is performed in a
threadsafe manner. The Developer has the responsibility for threadsafe access to
the attribute objects themselves. This will protect the attribute collection inside
the HttpSession object from concurrent access, eliminating the opportunity for an
application to cause that collection to become corrupted."
Appendix A Change Log 197

A.7 Changes Since Servlet 2.5 MR 2

A.7.1 Updated Annotation Requirements for Java EE
containers
Added EJBs, PreDestroy, PeristenceContext, PersistenceContexts, PersistenceUnit,
and PersistenceUnits with descriptions to the list of required Java EE cdontainer
annotations in Section 15.5, “Annotations and Resource Injection”.

A.7.2 Updated Java Enterprise Edition Requirements
Updated the Annotations to the final Java EE annotation names. Also updated the
"full" attribute in the web.xml to be "metadata-complete".

A.7.3 Clarified HttpServletRequest.getRequestURL()
The API documentation for
javax.servlet.http.HttpServletRequest.getRequestURL() was clarified.

The text in italics was added:

If this request has been forwarded using
RequestDispatcher.forward(ServletRequest, ServletResponse), the
server path in the reconstructed URL must reflect the path used to obtain the
RequestDispatcher, and not the server path specified by the client. Because this method
returns a StringBuffer, not a string, you can modify the URL easily, for example, to
append query parameters.

A.7.4 Removal of IllegalStateException from
HttpSession.getId()
The HttpSessionBindingListener calls the valueUnbound event after the session has
been expired, unfortunately, the HttpSession.getId() method is often used in this
scenario and is supposed to throw an IllegalStateException. The servlet EG agreed to
remove the exception from the API to prevent these types of exceptions.
198 Java Servlet Specification •

A.7.5 ServletContext.getContextPath()
The method getContextPath() was added to the ServletContext in the API. The
description is as follows:

public java.lang.String getContextPath()

Returns the context path of the web application. The context path is the portion of
the request URI that is used to select the context of the request. The context path
always comes first in a request URI. The path starts with a "/" character but does not
end with a "/" character. For servlets in the default (root) context, this method
returns "".

It is possible that a servlet container may match a context by more than one context
path. In such cases getContextPath() will return the actual context path used by the
request and it may differ from the path returned by this method. The context path
returned by this method should be considered as the prime or preferred context path
of the application.

Returns: The context path of the web application.

HttpServletRequest.getContextPath() was updated to clarify its relationship with the
ServletContext.getContextPath() method. The clarification is as follows.

It is possible that a servlet container may match a context by more than one context
path. In such cases this method will return the actual context path used by the
request and it may differ from the path returned by the
ServletContext.getContextPath() method. The context path returned by
ServletContext.getContextPath() should be considered as the prime or preferred
context path of the application.

A.7.6 Requirement for web.xml in web applications
Section 10.13, “Inclusion of a web.xml Deployment Descriptor” was added which
removes requirement for Java EE compliant web applications. The section is as
follows:

A web application is NOT required to contain a web.xml if it does NOT contain any
Servlet, Filter, or Listener components. In other words an application containing only
static files or JSP pages does not require a web.xml to be present.
Appendix A Change Log 199

A.8 Changes Since Servlet 2.4

A.8.1 Session Clarification
Clarified Section 7.3, “Session Scope” to allow for better support of session ids being
used in more than one context. This was done to support the Portlet specification
(JSR 168). Added the following paragraph at the end of Section 7.3:

“Additionally, sessions of a context must be resumable by requests into that
context regardless of whether their associated context was being accessed directly
or as the target of a request dispatch at the time the sessions were created."

Made the changes in Section 9.3, “The Include Method” by replacing the following
text:

"It cannot set headers or call any method that affects the headers of the response.
Any attempt to do so must be ignored."

with the following:

"It cannot set headers or call any method that affects the headers of the response,
with the exception of the HttpServletRequest.getSession() and
HttpServletRequest.getSession(boolean) methods. Any attempt to set the headers
must be ignored, and any call to HttpServletRequest.getSession() or
HttpServletRequest.getSession(boolean) that would require adding a Cookie
response header must throw an IllegalStateException if the response has been
committed."

A.8.2 Filter All Dispatches
Modified Section 6.2.5, “Filters and the RequestDispatcher” to clarify a way to map a
filter to all servlet dispatches by appending the following text to the end of the
section:

Finally, the following code uses the special servlet name '*':

CODE EXAMPLE A-1 Example of special servlet name ‘*’

<filter-mapping>

<filter-name>All Dispatch Filter</filter-name>

<servlet-name>*</servlet-name>

<dispatcher>FORWARD</dispatcher>

</filter-mapping>
200 Java Servlet Specification •

This code would result in the All Dispatch Filter being invoked on request
dispatcher forward() calls for all request dispatchers obtained by name or by path.

A.8.3 Multiple Occurrences of Servlet Mappings
Previous versions of the servlet schema allows only a single url-pattern or servlet
name per servlet mapping. For servlets mapped to multiple URLs this results in
needless repetition of whole mapping clauses.

The deployment descriptor servlet-mappingType was updated to:

A.8.4 Multiple Occurrences Filter Mappings
Previous versions of the servlet schema allows only a single url-pattern in a filter
mapping. For filters mapped to multiple URLs this results in needless repetition of
whole mapping clauses.

The deployment descriptor schema the filter-mappingType was updated to:

CODE EXAMPLE A-2 servlet-mappingType descriptor

<xsd:complexType name="servlet-mappingType">

<xsd:sequence>

<xsd:element name="servlet-name" type="j2ee:servlet-
nameType"/>

<xsd:element name="url-pattern" type="j2ee:url-patternType"
minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

CODE EXAMPLE A-3 Updated filter-mappingType schema

<xsd:complexType name="filter-mappingType">

<xsd:sequence>

<xsd:element name="filter-name" type="j2ee:filter-nameType"/>

<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="url-pattern" type="j2ee:url-
patternType"/>

<xsd:element name="servlet-name" type="j2ee:servlet-
nameType"/>

</xsd:choice>
Appendix A Change Log 201

This change allows multiple patterns and servlet names to be defined in a single
mapping as can be seen in the following example:

Section 6.2.4, “Configuration of Filters in a Web Application” was updated to clarify
the cases where there are multiple mappings with the following text:

"If a filter mapping contains both <servlet-name> and <url-pattern>, the container
must expand the filter mapping into multiple filter mappings (one for each <servlet-
name> and <url-pattern>), preserving the order of the <servlet-name> and <url-
pattern> elements."

An examples was also provided to clarify cases when there are multiple mappings.

A.8.5 Support Alternative HTTP Methods with
Authorization Constraints
The previous Servlet 2.4 schema restricted HTTP methods to GET, POST, PUT,
DELETE, HEAD, OPTIONS, and TRACE. The schema http-methodType was
changed from:

<xsd:element name="dispatcher" type="j2ee:dispatcherType"
minOccurs="0"

maxOccurs="4"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>

CODE EXAMPLE A-4 Filter mapping example

<filter-mapping>

<filter-name>Demo Filter</filter-name>

<url-pattern>/foo/*</url-pattern>

<url-pattern>/bar/*</url-pattern>

<servlet-name>Logger</servlet-name>

<dispatcher>REQUEST</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

CODE EXAMPLE A-5 Servlet 2.4 http-methodType schema

<xsd:complexType name="http-methodType">

...

<xsd:simpleContent>

CODE EXAMPLE A-3 Updated filter-mappingType schema
202 Java Servlet Specification •

To the following:

The http-method elements now need to be a token as described in HTTP 1.1
specification section 2.2.

A.8.6 Minimum J2SE Requirement
Servlet 2.5 Containers now require J2SE 5.0 as the minimum Java version.
Section 1.2, “What is a Servlet Container?” was updated to reflect this requirement.

A.8.7 Annotations and Resource Injection
Java EE technology compliant containers require annotations and resource injection
on servlets, filters, and listeners. Section 15.5, “Annotations and Resource Injection”
describes the annotations and resource injection in further detail.

<xsd:restriction base="j2ee:string">

<xsd:enumeration value="GET"/>

<xsd:enumeration value="POST"/>

<xsd:enumeration value="PUT"/>

<xsd:enumeration value="DELETE"/>

<xsd:enumeration value="HEAD"/>

<xsd:enumeration value="OPTIONS"/>

<xsd:enumeration value="TRACE"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

CODE EXAMPLE A-6 Servlet 2.5 http-methodType schema

<xsd:simpleType name="http-methodType">

<xsd:annotation>

<xsd:documentation>

A HTTP method type as defined in HTTP 1.1 section 2.2.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">

<xsd:pattern value="[\p{L}-[\p{Cc}\p{Z}]]+"/>

</xsd:restriction>

</xsd:simpleType>

CODE EXAMPLE A-5 Servlet 2.4 http-methodType schema
Appendix A Change Log 203

A.8.8 SRV.9.9 ("Error Handling") Requirement Removed
Section 10.9.1, “Request Attributes” defines the following requirement:

If the location of the error handler is a servlet or a JSP page:

[...]

The response setStatus method is disabled and ignored if called.

[...]

The JSP 2.1 EG has asked that this requirement above be removed to allow JSP error
pages to update the response status.

A.8.9 HttpServletRequest.isRequestedSessionIdValid()
Clarification
The API clarification better describes what happens when a client did not specify a
session id. The API documentation was updated to specify when false is returned.
The API documentation now states:

Returns false if the client did not specify any session ID.

A.8.10 SRV.5.5 ("Closure of Response Object")
Clarification
The behavior in Section 5.6, “Closure of Response Object” the response's content
length is set to 0 via response.setHeader("Content-Length", "0") and any
subsequently setHeader() calls are ignored.

Section 5.6, “Closure of Response Object” was updated to allow all headers to be set
by changing:

"The amount of content specified in the setContentLength method of the response
and has been written to the response"

To the following:

"The amount of content specified in the setContentLength method of the response
has been greater than zero and has been written to the response"
204 Java Servlet Specification •

A.8.11 ServletRequest.setCharacterEncoding() Clarified
The API was updated to described the behavior if the method is called after the
getReader() was called. If the getReader() is called there will be no effect.

A.8.12 Java Enterprise Edition Requirements
Chapter 15, “Requirements related to other Specifications details all requirements of
a Java EE container. Previously the requirements were mixed into each chapter.

A.8.13 Servlet 2.4 MR Change Log Updates Added
Added the changes from the Servlet 2.4 Maintenance Review. These changes include
grammar and typographical fixes.

A.8.14 Synchronized Access Session Object Clarified
Section 7.7.1, “Threading Issues” was updated to clarify that access to the session
object should be synchronized.

A.9 Changes Since Servlet 2.3
■ Optional “X-Powered-By” header is added in the response (5.2)
■ Clarification of “overlapping constraint” (12.8.1, 12.8.2)
■ Add the section to clarify the process order at the time of web application

deployment (9.12)
■ Clarification that the security model is also applied to filter (12.2)
■ Change the status code from 401 to 200 when FORM authentication is failed as

there is no appropriate error status code in HTTP/1.1 (12.5.3)
■ Clarification of the wrapper objects (6.2.2)
■ Clarification of overriding the platform classes (9.7.2)
■ Clarification of welcome file (9.10)
■ Clarification of internationalization - the relationship among setLocale,

setContentType, and setCharacterEncoding (5.4, 14.2.22)
■ Clarification of ServletRequestListener and ServletRequestAttributeListener

description (14.2.18, 14.2.20)
Appendix A Change Log 205

■ Add HttpSessionActivationListener and HttpSessionBindingListener into the
Table 10-1.

■ Change the word "auth constraint" to "authorization constraint" (12.8)
■ Add “Since” tag in the newly added methods in javadoc(14.2.16, 14.2.22)
■ Fix the data type of <session-timeout> to xsdIntegerType in schema(13.3)
■ Clarification when the listener throws the unhandled exception(10.6)
■ Clarification of the “shared library”(9.7.1)
■ Clarification of the container’s mechanism for the extension(9.7.1, third

paragraph)
■ HttpSession.logout method was removed. The portable authentication

mechanism will be addressed in the next version of this specification and logout
will also be discussed in that scope.(12.10)

■ It is now a recommendation, instead of a requirement, that the reference to the
request and response object should not be given to the object in other threads -
based on the requirement from JSR-168. Warnings are added when the thread
created by the application uses the objects managed by the container.(2.3.3.3)

■ It is now a recommendation, that the dispatch should occur in the same thread of
the same JVM as the original request - based on the requirement from JSR-168(8.2)

■ Clarification of “wrap” (6.2.2)
■ Clarification of handling the path parameter for the mapping(11.1)
■ Add the description about the “HTTP chunk” in HttpServlet.doGet

method(15.1.2)
■ J2SE 1.3 is the minimum version of the underlying Java platform with which

servlet containers must be built (1.2)
■ Clarification of ServletResponse.setBufferSize method (5.1)
■ Clarification of ServletRequest.getServerName and getServerPort (14.2.16.1)
■ Clarification of Internationalization (5.4, 14.2.22)
■ Clarification of the redirection of the welcome file (9.10)
■ Clarification of ServletContextListener.contextInitialized (14.2.12.1)
■ Clarification of HttpServletRequest.getRequestedSessionId - making it clear that it

returns the session ID specified by the client (15.1.3.2)
■ Clarification of the class loader for the extensions - the class loader must be the

same for all web applications within the same JVM (9.7.1)
■ Clarification of the case when ServletRequestListener throws an unhandled

exception (10.6, 14.2.20)
■ Clarification of the scope of ServletRequestListener (14.2.20)
■ Add the description about the case when the container has a caching mechanism

(1.2)
■ Validating deployment descriptor against the schema is required for Java EE

containers (13.2)
■ Sub elements under <web-app> can be in an arbitrary order (13.2)
■ One example of the container’s rejecting the web application was removed due to

the contradiction with SRV.11.1 (9.5)
■ url-patternType is changed from j2ee:string to xsd:string (13)
■ The sub-elements under <web-app> in deployment descriptor can be in the

arbitrary order (13)
206 Java Servlet Specification •

■ The container must inform a developer with a descriptive error message when
deployment descriptor file contains an illegal character or multiple elements of
<session-config>, <jsp-config>, or <login-config> (13)

■ Extensibility of deployment descriptor was removed (13)
■ Section SRV.1.6 added - describing the compatibility issue with the previous

version of this specification (1.6)
■ New attributes are added in RequestDispatcher.forward method (8.4.2)
■ New methods in ServletRequest interface and ServletRequestWrapper (14.2.16.1)
■ The interface SingleThreadModel was deprecated ((2.2.1, 2.3.3.1, 14.2.24)
■ Change the name of the method ServletRequestEvent.getRequest to

ServletRequestEvent.getServletRequest (14.2.19.2)
■ Clarification of the “request” to access to WEB-INF directory (9.5)
■ Clarification of the behavior of ServletRequest.setAttribute - change “value” to

“object” in “If the value passed in is null,” (14.2.16.1)
■ Fix the inconsistency between this specification and HttpServletRequest,

getServletPath - the return value starts with “/” (15.1.3.2)
■ Fix the inconsistency between this specification and

HttpServletRequest.getPathInfo - the return value starts with “/” (15.1.3.2)
■ Fix the inconsistency between this specification and

HttpServletRequest.getPathTranslated - add the case when the container cannot
translate the path (15.1.3.2)

■ Allow HttpServletRequest.getAuthType to return not only pre-defined four
authentication scheme but also the container-specific scheme (15.1.3.2)

■ Change the behavior of ttpSessionListener.sessionDestroyed to notify before the
session is invalidated (15.1.14.1)

■ Fix the wrong status code of 403 to 404 (9.5, 9.6)
■ Element “taglib” should be “jsp-config” (13.2)
■ Fix the version number of JSP specification to 2.0
■ Fix the wrong formats (5.5, 6.2.5, 12.8.3, 12.9)
■ HTTP/1.1 is now required (1.2)
■ <url-pattern> in <web-resource-collection> is mandatory (13.4)
■ Clarification of IllegalArgumentException in the distributed environments (7.7.2)
■ Clarification of error page handling (9.9.1, 9.9.2, 9.9.3, 6.2.5)
■ Clarification of Security Constraints, especially in the case of overlapping

constraints (12.8)
■ Clarification of the case when <session-timeout> element is not specified (13.4)
■ Clarification of the case when the resource is permanently unavailable (2.3.3.2)
■ Add missing getParameterMap() in the enumerated list (4.1)
■ Clarification of the status code when /WEB-INF/ resource is accessed (9.5)
■ Clarification of the status code when /META-INF/ resource is accessed (9.6)
■ Change xsd:string to j2ee:string in deployment descriptor (13.4)
■ Extensibility of deployment descriptors (SRV.13)
■ XML Schema definition of deployment descriptor (SRV.13)
■ Request listeners (SRV.10 and API change)

New API: ServletRequestListener, ServletRequestAttributeListener and associated
event classes

■ Ability to use Filters under the Request Dispatcher (6.2.5)
Appendix A Change Log 207

■ Required class loader extension mechanism (9.7.1)
■ Listener exception handling (10.6)
■ Listener order vs. servlet init()/destroy() clarification (ServletContextListener

javadoc change)
■ Servlets mapped to WEB-INF / response handling (9.5)
■ Request dispatcher / path matching rules (8.1)
■ Welcome files can be servlets (9.10)
■ Internationalization enhancements (5.4, 14,2,22, 15.1.5)
■ SC_FOUND(302) addition (15.1.5)
■ “Relative path” in getRequestDispatcher() must be relative against the current

servlet (8.1)
■ Bug fix in the example of XML (13.7.2)
■ Clarification of access by getResource “only to the resource” (3.5)
■ Clarification of SERVER_NAME and SERVER_PORT in getServerName() and

getServerPort() (14.2.16)
■ Clarification: “run-as” identity must apply to all calls from a servlet including

init() and destroy() (12.7)
■ Login/logout description and methods added (12.10, 15.1.7)
208 Java Servlet Specification •

Glossary

A
Application

Developer The producer of a web application. The output of an Application Developer is
a set of servlet classes, JSP pages, HTML pages, and supporting libraries and
files (such as images, compressed archive files, etc.) for the web application.
The Application Developer is typically an application domain expert. The
developer is required to be aware of the servlet environment and its
consequences when programming, including concurrency considerations, and
create the web application accordingly.

Application
Assembler Takes the output of the Application Developer and ensures that it is a

deployable unit. Thus, the input of the Application Assembler is the servlet
classes, JSP pages, HTML pages, and other supporting libraries and files for the
web application. The output of the Application Assembler is a web application
archive or a web application in an open directory structure.

D
Deployer The Deployer takes one or more web application archive files or other directory

structures provided by an Application Developer and deploys the application
into a specific operational environment. The operational environment includes
Glossary-209

a specific servlet container and web server. The Deployer must resolve all the
external dependencies declared by the developer. To perform his role, the
deployer uses tools provided by the Servlet Container Provider.

The Deployer is an expert in a specific operational environment. For example,
the Deployer is responsible for mapping the security roles defined by the
Application Developer to the user groups and accounts that exist in the
operational environment where the web application is deployed.

P
principal A principal is an entity that can be authenticated by an authentication protocol.

A principal is identified by a principal name and authenticated by using
authentication data. The content and format of the principal name and the
authentication data depend on the authentication protocol.

R
role (development) The actions and responsibilities taken by various parties during the

development, deployment, and running of a web application. In some
scenarios, a single party may perform several roles; in others, each role may be
performed by a different party.

role (security) An abstract notion used by an Application Developer in an application that can
be mapped by the Deployer to a user, or group of users, in a security policy
domain.

S
security policy

domain The scope over which security policies are defined and enforced by a security
administrator of the security service. A security policy domain is also
sometimes referred to as a realm.

security technology
domain The scope over which the same security mechanism, such as Kerberos, is used

to enforce a security policy. Multiple security policy domains can exist within a
single technology domain.
Glossary-210 Java Servlet Specification •

Servlet Container
Provider A vendor that provides the runtime environment, namely the servlet container

and possibly the web server, in which a web application runs as well as the
tools necessary to deploy web applications.

The expertise of the Container Provider is in HTTP-level programming. Since
this specification does not specify the interface between the web server and the
servlet container, it is left to the Container Provider to split the implementation
of the required functionality between the container and the server.

servlet definition A unique name associated with a fully qualified class name of a class
implementing the Servlet interface. A set of initialization parameters can be
associated with a servlet definition.

servlet mapping A servlet definition that is associated by a servlet container with a URL path
pattern. All requests to that path pattern are handled by the servlet associated
with the servlet definition.

System Administrator The person responsible for the configuration and administration of the servlet
container and web server. The administrator is also responsible for overseeing
the well-being of the deployed web applications at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and
management tools provided by the Container Provider and server vendors to
accomplish these tasks.
Glossary-211

U
uniform resource

locator (URL) A compact string representation of resources available via the network. Once
the resource represented by a URL has been accessed, various operations may
be performed on that resource.1 A URL is a type of uniform resource identifier
(URI). URLs are typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT-
based URLs which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/servlet/index.html

https://javashop.sun.com/purchase

In HTTP-based URLs, the ‘/’ character is reserved to separate a hierarchical
path structure in the URL-path portion of the URL. The server is responsible
for determining the meaning of the hierarchical structure. There is no
correspondence between a URL-path and a given file system path.

W
web application A collection of servlets, JSP pages , HTML documents, and other web resources

which might include image files, compressed archives, and other data. A web
application may be packaged into an archive or exist in an open directory
structure.

All compatible servlet containers must accept a web application and perform a
deployment of its contents into their runtime. This may mean that a container
can run the application directly from a web application archive file or it may
mean that it will move the contents of a web application into the appropriate
locations for that particular container.

1. See RFC 1738
Glossary-212 Java Servlet Specification •

web application
archive A single file that contains all of the components of a web application. This

archive file is created by using standard JAR tools which allow any or all of the
web components to be signed.

Web application archive files are identified by the .war extension. A new
extension is used instead of .jar because that extension is reserved for files
which contain a set of class files and that can be placed in the classpath or
double clicked using a GUI to launch an application. As the contents of a web
application archive are not suitable for such use, a new extension was in order.

web application,
distributable A web application that is written so that it can be deployed in a web container

distributed across multiple Java virtual machines running on the same host or
different hosts. The deployment descriptor for such an application uses the
distributable element.
Glossary-213

Glossary-214 Java Servlet Specification •

	Java™ Servlet Specification
	Preface
	Additional Sources
	Who Should Read This Specification
	API Reference
	Other Java Platform Specifications
	Other Important References
	Providing Feedback
	Expert Group members
	Acknowledgements

	Contents
	Overview
	1.1 What is a Servlet?
	1.2 What is a Servlet Container?
	1.3 An Example
	1.4 Comparing Servlets with Other Technologies
	1.5 Relationship to Java Platform, Enterprise Edition
	1.6 Compatibility with Java Servlet Specification Version 2.5

	The Servlet Interface
	2.1 Request Handling Methods
	2.2 Number of Instances
	2.3 Servlet Life Cycle

	The Request
	3.1 HTTP Protocol Parameters
	3.2 File upload
	3.3 Attributes
	3.4 Headers
	3.5 Request Path Elements
	3.6 Path Translation Methods
	3.7 Non Blocking IO
	3.8 Cookies
	3.9 SSL Attributes
	3.10 Internationalization
	3.11 Request data encoding
	3.12 Lifetime of the Request Object

	Servlet Context
	4.1 Introduction to the ServletContext Interface
	4.2 Scope of a ServletContext Interface
	4.3 Initialization Parameters
	4.4 Configuration methods
	4.5 Context Attributes
	4.6 Resources
	4.7 Multiple Hosts and Servlet Contexts
	4.8 Reloading Considerations

	The Response
	5.1 Buffering
	5.2 Headers
	5.3 Non Blocking IO
	5.4 Convenience Methods
	5.5 Internationalization
	5.6 Closure of Response Object
	5.7 Lifetime of the Response Object

	Filtering
	6.1 What is a filter?
	6.2 Main Concepts

	Sessions
	7.1 Session Tracking Mechanisms
	7.2 Creating a Session
	7.3 Session Scope
	7.4 Binding Attributes into a Session
	7.5 Session Timeouts
	7.6 Last Accessed Times
	7.7 Important Session Semantics

	Annotations and pluggability
	8.1 Annotations and pluggability
	8.2 Pluggability
	8.3 JSP container pluggability
	8.4 Processing annotations and fragments

	Dispatching Requests
	9.1 Obtaining a RequestDispatcher
	9.2 Using a Request Dispatcher
	9.3 The Include Method
	9.4 The Forward Method
	9.5 Error Handling
	9.6 Obtaining an AsyncContext
	9.7 The Dispatch Method

	Web Applications
	10.1 Web Applications Within Web Servers
	10.2 Relationship to ServletContext
	10.3 Elements of a Web Application
	10.4 Deployment Hierarchies
	10.5 Directory Structure
	10.6 Web Application Archive File
	10.7 Web Application Deployment Descriptor
	10.8 Replacing a Web Application
	10.9 Error Handling
	10.10 Welcome Files
	10.11 Web Application Environment
	10.12 Web Application Deployment
	10.13 Inclusion of a web.xml Deployment Descriptor

	Application Lifecycle Events
	11.1 Introduction
	11.2 Event Listeners
	11.3 Listener Class Configuration
	11.4 Deployment Descriptor Example
	11.5 Listener Instances and Threading
	11.6 Listener Exceptions
	11.7 Distributed Containers
	11.8 Session Events

	Mapping Requests to Servlets
	12.1 Use of URL Paths
	12.2 Specification of Mappings

	Security
	13.1 Introduction
	13.2 Declarative Security
	13.3 Programmatic Security
	13.4 Programmatic Access Control Annotations
	13.5 Roles
	13.6 Authentication
	13.7 Server Tracking of Authentication Information
	13.8 Specifying Security Constraints
	13.9 Default Policies
	13.10 Login and Logout

	Deployment Descriptor
	14.1 Deployment Descriptor Elements
	14.2 Rules for Processing the Deployment Descriptor
	14.3 Deployment Descriptor
	14.4 Deployment Descriptor Diagram
	14.5 Examples

	Requirements related to other Specifications
	15.1 Sessions
	15.2 Web Applications
	15.3 Security
	15.4 Deployment
	15.5 Annotations and Resource Injection

	Change Log
	A.1 Changes since Servlet 3.0
	A.2 Changes since Servlet 3.0 Proposed Final Draft
	A.3 Changes since Servlet 3.0 Public Review
	A.4 Changes since Servlet 3.0 EDR
	A.5 Changes since Servlet 2.5 MR6
	A.6 Changes since Servlet 2.5 MR 5
	A.7 Changes Since Servlet 2.5 MR 2
	A.8 Changes Since Servlet 2.4
	A.9 Changes Since Servlet 2.3
	Glossary
	A
	D
	P
	R
	S
	U
	W

